Namespaces
Variants
Actions

Difference between revisions of "User:Richard Pinch/sandbox-12"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Start article: Cyclic code)
(→‎Regular graph: move text)
 
(15 intermediate revisions by the same user not shown)
Line 1: Line 1:
 +
=Radical-inverse function=
 +
A function which maps positive integers to real numbers in the unit interval by reversing the expansion in a given base $b$.  Let $n$ have the base $b$ expansion
 +
$$
 +
n = \sum_{i=0}^k d_i b^i
 +
$$
 +
where $0 \le d_i < b$ and $d_k \ne 0$; then the radical inverse
 +
$$
 +
\phi_b(n) = \sum_{i=0}^k d_i b^{-1-i} \ .
 +
$$
 +
 +
The radical inverse function is used to construct sequences with low [[discrepancy]]: these are of use in quasi-Monte-Carlo methods.
 +
 +
The '''van der Corput sequence''' is the sequence $\left({\phi_2(n)}\right)$.  The discrepancy $D_N$ of this sequence satisfies
 +
$$
 +
N D_N \le \frac{\log(N+1)}{\log 2} \ .
 +
$$
 +
 +
====References====
 +
* L. Kuipers,  H. Niederreiter,  "Uniform distribution of sequences" , Wiley  (1974) {{ZBL|0281.10001}}; repr. Dover (2006) ISBN 0-486-45019-8
 +
 +
=Dispersion=
 +
The dispersion of a sequence $x_n$ in a [[metric space]] $(X,d)$ is defined as the function
 +
$$
 +
D_N = \sup_{x \in X} \min_{n=1,\ldots,N} d(x,x_n) \ .
 +
$$
 +
The associated ''dispersion constant'' is $\limsup_{N\rightarrow\infty} N d_N$.
 +
 +
If a sequence has low [[discrepancy]] then its dispersion must also be low, but the converse does not hold.
 +
 +
Sequences with low dispersion play a part in quasi-Monte-Carlo methods for global optimisation problems.
 +
 +
====References====
 +
* Harald Niederreiter, "On a measure of denseness for sequences", ''Topics in classical number theory, Colloq. Budapest 1981, Vol. II'', Colloq. Math. Soc. János Bolyai '''34''' (1984) 1163-1208 {{ZBL|0547.10045}}
 +
 
=Dyck path=
 
=Dyck path=
 
A [[lattice path]] on the square lattice from the origin $(0,0)$ to some point $(n,n)$ consisting of $2n$ steps of the form $N : (x,y) \rightarrow (x,y+1)$ and $E : (x,y) \rightarrow (x+1,y)$ with the property that the path
 
A [[lattice path]] on the square lattice from the origin $(0,0)$ to some point $(n,n)$ consisting of $2n$ steps of the form $N : (x,y) \rightarrow (x,y+1)$ and $E : (x,y) \rightarrow (x+1,y)$ with the property that the path
Line 82: Line 116:
 
====References====
 
====References====
 
* J. G. Oxley, "Matroid Theory" (2 ed) Oxford University Press (2011) ISBN 978-0-19-856694-6  {{ZBL|1254.05002}}
 
* J. G. Oxley, "Matroid Theory" (2 ed) Oxford University Press (2011) ISBN 978-0-19-856694-6  {{ZBL|1254.05002}}
* D. J. A. Welsh, "Matroid Theory", Dover (2010) [1976] ISBN 0486474399 {{ZBL|}}0343.05002
+
* D. J. A. Welsh, "Matroid Theory", Dover (2010) [1976] ISBN 0486474399 {{ZBL|0343.05002}}
  
 
=Ordered topological space=
 
=Ordered topological space=
Line 94: Line 128:
 
* Samuel Eilenberg, "Ordered Topological Spaces", ''American Journal of Mathematics'' '''63''' (1941) 39-45  {{DOI|10.2307/2371274}}  {{ZBL|0024.19203}}
 
* Samuel Eilenberg, "Ordered Topological Spaces", ''American Journal of Mathematics'' '''63''' (1941) 39-45  {{DOI|10.2307/2371274}}  {{ZBL|0024.19203}}
 
* T.S. Blyth, "Lattices and ordered algebraic structures", Springer (2005) ISBN 1-85233-905-5  {{ZBL|1073.06001}}
 
* T.S. Blyth, "Lattices and ordered algebraic structures", Springer (2005) ISBN 1-85233-905-5  {{ZBL|1073.06001}}
 
=Reed–Solomon code=
 
A family of codes defined over finite fields.  Let $k = \mathbf{F}_q$ and put $n = q-1$.  Let $\beta$ be a primitive element of $k^*$.  For an integer $k \le n$, let $L_q$ denote the vector space of polynomials over $k$ of degree $\le k-1$, and let $E$ be the evaluation map $e : L_k \rightarrow k^n$ given by
 
$$
 
E : f \mapsto \left({ f(\beta), f(\beta^2), \ldots, f(\beta^n) }\right) \ .
 
$$
 
 
The image $E[L_k]$ is a subspace of $k^n$ and is the ''Reed–Solomon code'' $\mathrm{RS}(q,k)$.
 
 
The map $E$ is injective, as a non-zero polynomial of degree $k<n$ cannot be zero at $n$ distinct values.  The rank of the code is thus $k$.  The minimum weight is $n-k+1$, corresponding to a polynomial with $k-1$ zeroes all in $k$.  The Reed–Solomon code thus meets the [[singleton bound]] and is an [[MDS code]].
 
 
====References====
 
* C.M. Goldie,  R.G.E. Pinch, ''Communication theory'', London Mathematical Society Student Texts. '''20''' Cambridge University Press (1991) ISBN 0-521-40456-8 {{ZBL|0746.94001}}
 
* J.H. van Lint, "Introduction to coding theory" (2nd ed.) Graduate Texts in Mathematics '''86''' Springer (1992) ISBN 3-540-54894-7 {{ZBL|0747.94018}}
 
* H. Stichtenoth,  "Algebraic function fields and codes", Universitext, Springer  (1993)  ISBN 3-540-58469-6 {{ZBL|0816.14011}}
 
 
 
=Singleton bound=
 
A constraint on the parameters of a linear block code.  If a code has length $n$, rank $k$ and minimum distance $d$, then
 
$$
 
k+d \le n+1 \ .
 
$$
 
The bound is obtained by ''puncturing'' a code $C$ by selecting all the words with the symbol $0$ in a specific location and then deleting that symbol from all words.
 
 
A code for which equality holds is a '''maximum distance separable''' or '''MDS code'''.  Examples of MDS codes are the [[Reed–Solomon code]]s, which show that
 
if $n \le q+1$ there are MDS codes over $\mathbf{F}_q$ of rank $k$ for all $k< n$.
 
 
 
====References====
 
* C.M. Goldie,  R.G.E. Pinch, ''Communication theory'', London Mathematical Society Student Texts. '''20''' Cambridge University Press (1991) ISBN 0-521-40456-8 {{ZBL|0746.94001}}
 
* J.H. van Lint, "Introduction to coding theory" (2nd ed.) Graduate Texts in Mathematics '''86''' Springer (1992) ISBN 3-540-54894-7 {{ZBL|0747.94018}}
 
* F.J. MacWilliams, N.J.A. Sloane, "The theory of error-correcting codes. Parts I, II" (3rd repr.) North-Holland Mathematical Library '''16'''  Elsevier (1985) ISBN 0-444-85193-3  {{ZBL|0657.94010}}
 
* H. Stichtenoth,  "Algebraic function fields and codes", Universitext, Springer  (1993)  ISBN 3-540-58469-6 {{ZBL|0816.14011}}
 
 
=BCH code=
 
A [[cyclic code]] over a finite field.  Fix length $n$ and ground field $\mathbf{F}_q$ and a design distance parameter $\delta$.  Let $\beta$ be a primitive $n$-th root of unity in a suitable extension of $\mathbf{F}_q$.  The generator of the cyclic code is the least common multiple $g$ of the minimal polynomials (over $\mathbf{F}_q$) of the elements $\beta^1, \beta^2, \ldots, \beta^{\delta-1}$. 
 
 
The minimum distance of the BCH code generated by $g$ is at least $\delta$: this is the ''BCH bound''.
 
 
As an example, let $q=2$ and $\beta$ be a primitive $7$-th root of unity in $\mathrm{F}_{8}$: we may take $\beta$ to satisfy the polynomial $x^3 + x + 1$.  Choose $\delta = 3$.  The minimal polynomial for $\beta^2$ is the same as that of $\beta$, so that the cyclic code is generated by the word $1101000$.  This is in fact the  Hamming [7,4] code.
 
 
====References====
 
* C.M. Goldie,  R.G.E. Pinch, ''Communication theory'', London Mathematical Society Student Texts. '''20''' Cambridge University Press (1991) ISBN 0-521-40456-8 {{ZBL|0746.94001}}
 
 
=Hamming code=
 
A binary block code capable of error correction: see [[Error-correcting code]].
 
 
The Hamming $[7,4]$ code has generator matrix with first row $1101000$ and the others being its three right shifts.  It is a [[cyclic code]], and indeed a [[BCH code]] with design distance $3$.  It is perfect, because the balls of radius $1$ about the codewords have eight elements and the 16 balls precisely fill out the 7-dimensional space.
 
 
====References====
 
* C.M. Goldie,  R.G.E. Pinch, ''Communication theory'', London Mathematical Society Student Texts. '''20''' Cambridge University Press (1991) ISBN 0-521-40456-8 {{ZBL|0746.94001}}
 
 
 
=Cyclic code=
 
A block code over a finite field for which the code words have cyclic symmetric: any cyclic permutation of a code word is again a code word.  A linear code of length $n$ over the field $k$ may be identified with
 
polynomials of degree $< n$ over $k$ in an indeterminate $X$: the cyclic symmetry condition states that the code is invariant under multiplication by $X$ modulo $X^n-1$, so that the code may be identified with an
 
ideal of the quotient ring $k[X]/\langle X^n-1 \rangle$.  Since the polynomial ring $k[X]$ is a [[principal ideal domain]], the codes are all principal ideals, and hence are determined by their generators, which must be factors of $X^n-1$. 
 
 
 
====References====
 
* C.M. Goldie,  R.G.E. Pinch, ''Communication theory'', London Mathematical Society Student Texts. '''20''' Cambridge University Press (1991) ISBN 0-521-40456-8 {{ZBL|0746.94001}}
 

Latest revision as of 09:27, 19 January 2021

Radical-inverse function

A function which maps positive integers to real numbers in the unit interval by reversing the expansion in a given base $b$. Let $n$ have the base $b$ expansion $$ n = \sum_{i=0}^k d_i b^i $$ where $0 \le d_i < b$ and $d_k \ne 0$; then the radical inverse $$ \phi_b(n) = \sum_{i=0}^k d_i b^{-1-i} \ . $$

The radical inverse function is used to construct sequences with low discrepancy: these are of use in quasi-Monte-Carlo methods.

The van der Corput sequence is the sequence $\left({\phi_2(n)}\right)$. The discrepancy $D_N$ of this sequence satisfies $$ N D_N \le \frac{\log(N+1)}{\log 2} \ . $$

References

  • L. Kuipers, H. Niederreiter, "Uniform distribution of sequences" , Wiley (1974) Zbl 0281.10001; repr. Dover (2006) ISBN 0-486-45019-8

Dispersion

The dispersion of a sequence $x_n$ in a metric space $(X,d)$ is defined as the function $$ D_N = \sup_{x \in X} \min_{n=1,\ldots,N} d(x,x_n) \ . $$ The associated dispersion constant is $\limsup_{N\rightarrow\infty} N d_N$.

If a sequence has low discrepancy then its dispersion must also be low, but the converse does not hold.

Sequences with low dispersion play a part in quasi-Monte-Carlo methods for global optimisation problems.

References

  • Harald Niederreiter, "On a measure of denseness for sequences", Topics in classical number theory, Colloq. Budapest 1981, Vol. II, Colloq. Math. Soc. János Bolyai 34 (1984) 1163-1208 Zbl 0547.10045

Dyck path

A lattice path on the square lattice from the origin $(0,0)$ to some point $(n,n)$ consisting of $2n$ steps of the form $N : (x,y) \rightarrow (x,y+1)$ and $E : (x,y) \rightarrow (x+1,y)$ with the property that the path never passes below the line $y=x$.

The number of Dyck paths of length $2n$ is given by the $n$-th Catalan number $$ C_n = \frac{1}{n+1}\binom{2n}{n} \ . $$

References

Catalan number

The $n$-th Catalan number $$ C_n = \frac{1}{n+1}\binom{2n}{n} \ . $$ The generating function is given by $$ \sum_{n=1}^\infty C_n z^n = \frac{1-\sqrt{1-4z}}{2z} \ . $$ The Catalan numbers appear in the enumeration of a number of combinatorially defined object:

References

Poisson ratio

The ratio of longitudinal extension to lateral compression when an elastic substance is put under tension.

See: Elasticity, mathematical theory of; Lamé constants.

References

  • Horace Lamb, "Statics", Cambridge University Press (1960)

Elastic modulus

Young's modulus

The ratio of longitudinal extension to force applied per unit area when an elastic substance is put under tension.

See: Elasticity, mathematical theory of; Lamé constants.

References

  • Horace Lamb, "Statics", Cambridge University Press (1960)

Partition symbol

A notation used to compactly express propositions of partition calculus. The symbol $$ \alpha \rightarrow (\beta)_\gamma^r $$ for cardinals $\alpha,\beta,\gamma$ and natural number $r$, denotes the following proposition.

Given a set $S$ and a colouring of $S^r$ into a set of $\gamma$ colours, there exists a subset $T$ of $S$ of cardinality $|T|=\beta$ such that the colouring restricted to $T^r$ is monochrome.

Here a colouring of a set $X$ by a set of colours $C$ is simply a partition of $X$ into parts indexed by the set $C$.

The symbol $$ \alpha \rightarrow (\beta_1,\ldots,\beta_j)^r $$ denotes the following proposition:

Given a set $S$ of cardinality $\alpha$ and a colouring of $S^r$ by $j$ colours, there exists an index $i$ subset $T$ of $S$ of cardinality $|T|=\beta_i$ such that the colouring restricted to $T^r$ is monochrome.

Examples.

  • Ramsey's theorem: $\omega \rightarrow (\omega)_n^r$.
  • Sierpinski's theorem: $c \not\rightarrow (\omega_1,\omega_2)^2$.


References

  • M.E. Rudin, "Lectures on set theoretic topology", Amer. Math. Soc. (1975) ISBN 0-8218-1673-X Zbl 0318.54001

Isthmus

bridge, co-loop

An isthmus of a graph is an edge for which deletion increases the number of connected components of the graph.

An isthmus of a matroid $M$ on a set $E$ is an element of $E$ which is in every basis for $M$. An element of $E$ is a co-loop of $M$ if and only if it is a loop of the dual matroid $M^*$, that is, does not belong to any base of $M^*$. If $M$ is a graphic matroid, then the definitions coincide.

References

  • J. G. Oxley, "Matroid Theory" (2 ed) Oxford University Press (2011) ISBN 978-0-19-856694-6 Zbl 1254.05002
  • D. J. A. Welsh, "Matroid Theory", Dover (2010) [1976] ISBN 0486474399 Zbl 0343.05002

Ordered topological space

A topological space $X$ with a partial order ${\le}$ related to the topology by the condition that if $x < y$ then there are neighbourhoods $N_x$, $N_y$ such that $x < y'$ for all $y' \in N_y$ and $x' < y$ for all $x' \in N_x$. An ordered topological space is necessarily a Hausdorff space.

An ordered topological space is totally order-disconnected if whenever $x \not\le y$ there exists a clopen down-set $D$ such that $x \not\in D$ and $y \in D$.

A Priestley space is a compact totally order-disconnected space. An Ockham space is a Priestley space equipped with an order-reversing continuous mapping $g$: see also Ockham algebra.

References

  • Samuel Eilenberg, "Ordered Topological Spaces", American Journal of Mathematics 63 (1941) 39-45 DOI 10.2307/2371274 Zbl 0024.19203
  • T.S. Blyth, "Lattices and ordered algebraic structures", Springer (2005) ISBN 1-85233-905-5 Zbl 1073.06001
How to Cite This Entry:
Richard Pinch/sandbox-12. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Richard_Pinch/sandbox-12&oldid=42812