Namespaces
Variants
Actions

Difference between revisions of "User:Matteo.focardi/sandbox"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Replaced content with "Category:Linear and multilinear algebra; matrix theory {{MSC|15Axx|}} {{TEX|done}}")
Line 1: Line 1:
{{MSC|28A}}
+
[[Category:Linear and multilinear algebra; matrix theory]]
 
+
{{MSC|15Axx|}}
[[Category:Classical measure theory]]
 
 
 
 
{{TEX|done}}
 
{{TEX|done}}
 
A theorem on the relation between the concepts of  almost-everywhere convergence and uniform convergence of a sequence of  functions. In literature it is sometimes cited as Egorov-Severini's
 
theorem since it was proved independently and almost contemporarily by the two authors (see
 
refs. {{Cite|Ego}}, {{Cite|Sev}}).
 
 
Let $\mu$ be a [[Set function|$\sigma$-additive measure]] defined on a set $X$ endowed with a [[Algebra of sets|$\sigma$-algebra]] ${\mathcal A}$, i.e. $(X,{\mathcal A})$ is a [[Measurable space|measurable space]].
 
Let $E\in{\mathcal A}$,  $\mu(E)<+\infty$, and let $f_k:E\to\mathbb{R}$ be a sequence of $\mu$-measurable functions converging $\mu$-almost-everywhere to a function $f$. Then, for every $\varepsilon>0$ there exists a measurable set $E_\varepsilon\subset E$ such that $\mu(E\setminus E_\varepsilon)<\varepsilon$, and the sequence $f_k$ converges to $f$ uniformly on $E_\varepsilon$.
 
 
The result is in general false if the condition $\mu(E)<+\infty$ is dropped. Despite of this, Luzin noted that if $X$, ${\mathcal A}$, $\mu$, $f_k$ and $f$ are as above, and $E\in{\mathcal A}$ is the countable union of sets $E_n$ with finite measure, then there exist a sequence
 
$\{A_n\}\subset\mathcal{A}$ and $H\in{\mathcal  A}$, with $\mu(H)=0$, such that $E=(\cup_nA_n)\cup H$, and $f_k$ converges uniformly to $f$ on each $A_n$.
 
 
A typical application is when $\mu$ is a positive [[Radon measure|Radon measure]] defined on a topological space $X$
 
(cf. [[Measure in a topological vector space|Measure in a topological vector space]]) and $E$ is a compact set.
 
The case of the Lebesgue measure on the line  was first proved by D.F. Egorov ({{Cite|Ego}}).
 
 
Egorov's theorem has various generalizations. For instance, it works for sequences of measurable functions defined on a
 
measure space [[Measure space|$(X,{\mathcal A},\mu)$]] with values into a separable metric space $Y$. The conclusion  of
 
Egorov's theorem might be false if $Y$ is not metrizable.
 
 
Another generalization is due to  G. Mokobodzki  (see  {{Cite|DeMe}}, {{Cite|Rev}}):
 
Let $\mu$, ${\mathcal A}$ and $E$ be as above, and let $U$ be a set of $\mu$-measurable finite functions that is compact in the topology of [[Pointwise  convergence|pointwise convergence]].
 
Then there is a sequence $\{A_n\}$ of disjoint sets  belonging to ${\mathcal A}$ such that the
 
support of $\mu$ is contained in $\cup_nA_n$ and such that,  for every $n$, the restrictions
 
to $A_n$ of the elements of $U$ is compact in the topology of
 
[[Uniform convergence|uniform convergence]].
 
 
 
 
====References====
 
{|
 
|-
 
|valign="top"|{{Ref|Bou}}||    N. Bourbaki, "Elements of mathematics. Integration", Addison-Wesley    (1975) pp. Chapt.6;7;8 (Translated from French) {{MR|0583191}}    {{ZBL|1116.28002}} {{ZBL|1106.46005}} {{ZBL|1106.46006}}    {{ZBL|1182.28002}} {{ZBL|1182.28001}} {{ZBL|1095.28002}}    {{ZBL|1095.28001}} {{ZBL|0156.06001}}
 
|-
 
|valign="top"|{{Ref|DeMe}}||
 
C. Dellacherie,    P.A. Meyer,  "Probabilities and potential" , '''C''' , North-Holland  (1988)  (Translated from French)  {{MR|0939365}} {{ZBL|0716.60001}}
 
|-
 
|valign="top"|{{Ref|Ego}}|| D.F. Egorov,    "Sur les suites de fonctions mesurables"  ''C.R. Acad. Sci. Paris'' ,  '''152'''  (1911)  pp. 244–246  {{MR|}} {{ZBL|}}
 
|-
 
|valign="top"|{{Ref|Ha}}|| P.R. Halmos,  "Measure theory", v. Nostrand  (1950) {{MR|0033869}} {{ZBL|0040.16802}}
 
|-
 
|valign="top"|{{Ref|Sev}}||  A.N. Kolmogorov,  S.V. Fomin,  "Elements of  the theory of functions  and functional analysis" , '''1–2''' , Graylock  (1957–1961)  (Translated from Russian)  {{MR|1025126}} {{MR|0708717}}  {{MR|0630899}}  {{MR|0435771}} {{MR|0377444}} {{MR|0234241}}  {{MR|0215962}}  {{MR|0118796}} {{MR|1530727}} {{MR|0118795}}  {{MR|0085462}}  {{MR|0070045}} {{ZBL|0932.46001}} {{ZBL|0672.46001}}  {{ZBL|0501.46001}}  {{ZBL|0501.46002}} {{ZBL|0235.46001}}  {{ZBL|0103.08801}}
 
|-
 
|valign="top"|{{Ref|Rev}}|| D. Revuz,  "Markov chains" , North-Holland  (1975)  {{MR|0415773}} {{ZBL|0332.60045}}
 
|-
 
|valign="top"|{{Ref|Sev}}||
 
C. Severini, "Sulle successioni di funzioni ortogonali" (Italian), Atti Acc. Gioenia, (5) 3 10 S, (1910) pp. 1−7 {{ZBL|41.0475.04}}
 
|-
 
|}
 

Revision as of 13:27, 23 November 2012

2020 Mathematics Subject Classification: Primary: 15Axx [MSN][ZBL]

How to Cite This Entry:
Matteo.focardi/sandbox. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Matteo.focardi/sandbox&oldid=28816