Namespaces
Variants
Actions

Difference between revisions of "User:Boris Tsirelson/sandbox1"

From Encyclopedia of Mathematics
Jump to: navigation, search
 
(23 intermediate revisions by the same user not shown)
Line 1: Line 1:
=Genetic Algorithms=
+
<ref> [http://hea-www.harvard.edu/AstroStat http://hea-www.harvard.edu/AstroStat]; <nowiki> http://www.incagroup.org </nowiki>; <nowiki> http://astrostatistics.psu.edu </nowiki> </ref>
  
==Genetic algorithms (GAs): basic form==
+
====Notes====
 +
<references />
  
A generic GA (also known as an evolutionary algorithm [EA]) assumes a discrete search space $H$ and a function
+
-------------------------------------------
\[f:H\to\R,\]
 
where $H$ is a subset of the Euclidean space $\R$.
 
  
The general problem is to find
 
\[\arg\underset{X\in H}{\mathop{\min }}\,f\]
 
where $X$ is a vector of the decision variables and $f$ is the objective function.
 
  
With  GAs it is customary to distinguish genotype–the encoded representation  of the variables–from phenotype–the set of variables themselves. The  vector $X$ is represented by a string (or chromosome) $s$ of length $l$ made up of symbols drawn  from an alphabet $A$ using the mapping
+
{|
\[c:A^l\to H\]
+
| A || B || C
The  mapping $c$ is not necessarily surjective. The range of $c$ determine the subset of $A^l$ available for exploration by a GA.  The range of $c$, $\Xi$
+
|-
\[\Xi\subseteq {{A}^{l}}\]
+
| X || Y || Z
is  needed to account for the fact that some strings in the image $A^l$ under $c$  may represent invalid solutions to the original problem.
+
|}
  
The  string length $l$ depends on the dimensions of both $H$ and $A^l$, with the elements of the string corresponding to  genes and the values to alleles. This statement of genes and alleles is  often referred to as genotype-phenotype mapping.
 
  
Given the statements above, the optimization becomes:
 
\[\arg\underset{S\in L}{\mathop{\min g}}\,\],
 
given the function
 
\[g(s)=f(c(s))\].
 
Finally,  with GAs it is helpful if $c$ is a bijection. The  important property of bijections as they apply to GAs is that bijections have an inverse, i.e., there is a unique vector $x$ for every string and a unique string for each $x$.
 
  
 +
-----------------------------------------
 +
-----------------------------------------
  
==Genetic algorithms and their Operators==
+
$\newcommand*{\longhookrightarrow}{\lhook\joinrel\relbar\joinrel\rightarrow}$
  
Let $H$ be a nonempty set (the individual or search  space)
+
<asy>
\[{{\left\{{{u}^{i}} \right\}}_{i\ in \mathbb{N}}}\]
+
size(100,100);
a sequence in
+
label(scale(1.7)*'$T(\\Sigma)\hookrightarrow T(\\Sigma,X)$',(0,0));
\[{{\mathbb{Z}}^{+}}\]
+
</asy>
(the parent populations).
 
\[{{\left\{  {{u}^{'(i)}} \right\}}_{i\in \mathbb{N}}}\]
 
a sequence in
 
\[{{\mathbb{Z}}^{+}}\]
 
(the offspring population sizes),
 
\[\phi:H\to  \mathbb{R}\]
 
a fitness function,
 
\[\iota :\cup_{i=1}^{\infty}{{({{H}^{u}})}^{(i)}}\to\{\text{true},\text{false}\}\]
 
(the termination  criteria),
 
\[\chi\in\{\text{true},\text{false}\},\]
 
$r$ a sequence
 
\[\left\{{{r}^{(i)}}  \right\}\]
 
  
Define the collection $\mu$ (the  number of individuals) via $H_\mu$. The population transforms are denoted by
+
<asy>
\[T:{{H}^{\mu }}\to {{H}^{\mu }}\]
+
size(220,220);
where
 
\[\mu \in \mathbb{N}\]
 
of recombination operators $\tau(i)$:
 
\[X_{r}^{(i)}\to T(\Omega_{r}^{(i)},T\left( {{H}^{{{u}^{(i)}}}},{{H}^{u{{'}^{(i)}}}} \right)),\]
 
$m$ a sequence of {m(i)} of mutation operators in mi,
 
\[X_{m}^{(i)}\to T(\Omega  _{m}^{(i)},T\left({{H}^{{{u}^{(i)}}}},{{H}^{u{{'}^{(i)}}}} \right)),\]
 
$s$ a sequence of {si} selection operators s(i):
 
\[X_{s}^{(i)}\times T(H,\mathbb{R})\to T(\Omega_{s}^{(i)},T(({{H}^{u{{'}^{(i)+\chi {{\mu}^{(i)}}}}}}),{{H}^{{{\mu  }^{(i+1)}}}})),\]
 
\[\Theta_{r}^{(i)}\in X_{r}^{(i)}\]
 
(the  recombination parameters),
 
\[\Theta_{m}^{(i)}\in X_{m}^{(i)}\]
 
(the  mutation parameters), and
 
\[\Theta_{s}^{(i)}\in X_{s}^{(i)}\]
 
(the  selection parameters).
 
  
To account for the cases where populations whose size not equal to their predecessors’, the following expression
+
import math;
\[T:{{H}^{\mu}}\to {{H}^{{{\mu }'}}}\]
 
accommodates  populations that contain the same or different individuals. This  mapping has the ability to represent all population sizes, genetic  operators, and parameters as sequences.
 
  
The  execution of a GA typically begins by random sampling with replacement  from $A^l$.  The  resulting collection is the initial population, denoted by $P(0)$. In general, a population is a collection
+
int kmax=40;
\[P=({{a}_{1}},{{a}_{2}},...,{{a}_{\mu }})\]
 
of  individuals, where
 
\[{{a}_{i}}\in {{A}^{l}},\]
 
and populations are treated as $n$-tuples of individuals. The number of individuals ($\mu$) is defined as the population size.
 
  
Following upon the  work of Lamont and Merkle (Lamont, 1997) and others, the termination  criteria and the other genetic operators(GOs)will be defined in more  detail.
+
guide g;
 +
for (int k=-kmax; k<=kmax; ++k) {
 +
  real phi = 0.2*k*pi;
 +
  real rho = 1;
 +
  if (k!=0) {
 +
    rho = sin(phi)/phi;
 +
  }
 +
  pair z=rho*expi(phi);
 +
  g=g..z;
 +
}
 +
 
 +
draw (g);
  
Since $H$ is a nonempty  set,
+
defaultpen(0.75);
\[c:{{A}^{l}}\to H,\]
+
draw ( (0,0)--(1.3,0), dotted, Arrow(SimpleHead,5) );
and
+
dot ( (1,0) );
\[f:H\to \mathbb{R},\]
+
label ( "$a$", (1,0), NE );
the fitness scaling  function can be defined as
 
\[{{T}_{s}}:\mathbb{R}\to \mathbb{R}\]
 
and a related fitness function as
 
\[\Phi \triangleq {{T}_{s}}\circ f\circ c.\]
 
In this definition it is understood that the objective function $f$ is determined by the application, while the specification of  the decoding function $c[1]$ and the fitness scaling  function $T_s$ are  design issues.
 
  
 
+
</asy>
After initialization, the  execution proceeds iteratively.  Each iteration consists of an  application of one or more GOs. The combined effect of the GOs applied  in a particular generation $t\in N$ is a transformation of the current  population ''Italic text''P(t) into a new population ''Italic  text''P(t+1).
 
 
 
In the population transformation $\mu  ,{\mu}'\ in {{\mathbb{Z}}^{+}}$(the parent and offspring population  sizes, respectively). A mapping $T:{{H}^{\mu }}\ to {{H}^{{{\mu }'}}}$  is called a population transformation (''Italic text''PT). If  $T(P)={P}'$, then ''Italic text''P is the parent population and  <sup>Superscript text</sup>''Italic text''P/ the offspring  population. If $\mu ={\mu }'$,then it is called the population size.
 
 
 
The  ''Italic text''PT resulting from a GO often depends on the outcome of a  random experiment. This result is referred to as a random population  transformation (''Italic text''RPT or random PT). To define ''Italic  text''RPT, let $\mu \in {{\mathbb{Z}}^{+}}$and $\Omega $ be a set (the  sample space). A random function $R:\Omega \to T({{H}{\mu  }},\bigcup\limits_{{\mu }'\ in {{\mathbb{Z}}^{+}}}^{{}}{{{H}^{{{\mu  }'}}}})$ is called a ''Italic text''RPT. The distribution of ''Italic  text''PTs resulting from the application of a GO depends on the operator  parameters; in other words, a GO maps its parameters to a ''Italic  text''RPT.
 
 
 
Now that both the fitness function and  ''Italic text''RPT have been defined, let$\mu \in {{\mathbb{Z}}^{+}}$,  ''Italic text''X be a set (the parameter space) and $\Omega $ a set. The  mapping $\Zeta :X\to T\left( \Omega ,T\left[ {{H}^{\mu  }},\bigcup\limits_{{\mu }'\in {{\mathbb{Z}}^{+}}}^{{}}{{{H}^{{{\mu}'}}}}  \right] \right)$ is a GO. The set of GOs is denoted as $GAOP\left(  H,\mu ,X,\Omega  \right)$.
 
 
 
 
 
There are three  common GOs: recombination,mutation, and selection. These three operators  are roughly analogous to their similarly named counterparts in  genetics. The application of them in GAs is strictly Darwin-like in  nature, i.e., “survival of the fittest.”
 
 
 
For the  recombination operator let $r\in GAOP\left( H,\mu ,X,\Omega  \right)$.  If there exists $P\in {{H}^{\mu }},\Theta \in X$, and $\omega \in \Omega  $, such that one individual in the offspring population ${{r}_{\Theta  }}\left( P \right)$ depends on more than one individual of P,then r is  referred to as a recombination operator.
 
 
 
For the  mutation operator let $m\in GAOP\left( H,\mu ,X,\Omega\right)$. If for  every $P\in {{H}^{\mu }}$, for every $\Theta \in X$, for every  $\omega\in \Omega $, and if each individual in the offspring population  ${{m}_{\Theta}}\left( P \right)$ depends on at most one individual of P,  then m is called a mutation operator.
 
 
 
Finally, for  the selection operator let $s\in EVOP\left( H,\mu ,X\times  T\left(H,\mathbb{R}),\Omega  \right) \right)$. If $P\in {{H}^{\mu  }}$,$\Theta \in X$,$\Phi :H\to\mathbb{R}$in all cases, and satisfies  $a\in {{s}_{\left( \Theta ,\Phi \right)}}(P)\Rightarrow a\in P$, then s  is a selection operator.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
'''Bold text'''Endnotes
 
 
 
[1]  If the domain of c is total, i.e., the domain of c is all of A I, c is  called a decoding function. The mapping of c is not necessarily  surjective. The range of c determines the subset of Al available for  exploration by the evolutionary algorithm.
 

Latest revision as of 07:12, 13 March 2016

[1]

Notes

  1. http://hea-www.harvard.edu/AstroStat; http://www.incagroup.org ; http://astrostatistics.psu.edu


A B C
X Y Z




$\newcommand*{\longhookrightarrow}{\lhook\joinrel\relbar\joinrel\rightarrow}$

How to Cite This Entry:
Boris Tsirelson/sandbox1. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Boris_Tsirelson/sandbox1&oldid=27706