Namespaces
Variants
Actions

Difference between revisions of "User:Boris Tsirelson/sandbox1"

From Encyclopedia of Mathematics
Jump to: navigation, search
 
(254 intermediate revisions by the same user not shown)
Line 1: Line 1:
$\newcommand{\Om}{\Omega}
+
<ref> [http://hea-www.harvard.edu/AstroStat http://hea-www.harvard.edu/AstroStat]; <nowiki> http://www.incagroup.org </nowiki>; <nowiki> http://astrostatistics.psu.edu </nowiki> </ref>
\newcommand{\F}{\mathcal F}
 
\newcommand{\B}{\mathcal B}
 
\newcommand{\M}{\mathcal M} $
 
A [[probability space]] is called '''standard''' if it is a [[standard Borel space]] endowed with a [[probability measure]], completed with null sets, and possibly augmented with another null set. (See Definition 1 below.) Every standard probability space is isomorphic (mod 0) to an interval with [[Lebesgue measure]], a finite or countable set of atoms, or a combination of both. (See Theorem ? below.)
 
  
''Example.'' The set of all continuous functions $[0,\infty)\to\R$ with the [[Wiener measure]] is a standard probability space.
+
====Notes====
 +
<references />
  
''Non-example.'' The set $[0,1]^\R$ of all functions $\R\to[0,1]$ with the product of Lebesgue measures is a nonstandard probability space.
+
-------------------------------------------
  
'''Definition 1a.''' A probability space $(\Om,\F,P)$ is ''standard'' if it is [[Measure space#complete|complete]] and there exist a subset $\Om_1\subset\Om$ and a σ-field (in other words, σ-algebra) $\B$ on $\Om_1$ such that $(\Om_1,\B)$ is a standard Borel space and $\forall A\in\F \;\; \exists B\in\B \; \big( B \subset A \land P(B)=P(A) \big)$.
 
  
'''Definition 1b''' (equivalent). A probability space $(\Om,\F,P)$ is ''standard'' if it is complete, [[Measure space#perfect|perfect]] and countably separated mod 0 in the following sense: some subset of full measure, treated as a [[Measurable space#subspace|subspace]] of the measurable space $(\Om,\F)$, is a [[Measurable space#separated|countably separated]] measurable space.
+
{|
 +
| A || B || C
 +
|-
 +
| X || Y || Z
 +
|}
  
  
-------------------------------------------------------
 
  
====On terminology====
+
-----------------------------------------
 +
-----------------------------------------
  
In {{Cite|M|Sect. 6}} universally measurable spaces are called metrically standard Borel spaces.
+
$\newcommand*{\longhookrightarrow}{\lhook\joinrel\relbar\joinrel\rightarrow}$
  
In {{Cite|K|Sect. 21.D}} universally measurable subsets of a standard (rather than arbitrary) measurable space are defined.
+
<asy>
 +
size(100,100);
 +
label(scale(1.7)*'$T(\\Sigma)\hookrightarrow T(\\Sigma,X)$',(0,0));
 +
</asy>
  
In {{Cite|N|Sect. 1.1}} an absolute measurable space is defined as a separable metrizable topological space such that every its homeomorphic image in every such space (with the Borel σ-algebra) is a universally measurable subset. The corresponding measurable space (with the Borel σ-algebra) is also called an absolute measurable space in {{Cite|N|Sect. B.2}}.
+
<asy>
 +
size(220,220);
  
====References====
+
import math;
  
{|
+
int kmax=40;
|valign="top"|{{Ref|I}}||  Kiyosi Itô, "Introduction to probability theory", Cambridge (1984). &nbsp; {{MR|0777504}} &nbsp; {{ZBL|0545.60001}}
+
 
|-
+
guide g;
|valign="top"|{{Ref|C}}|| Donald L. Cohn, "Measure theory", Birkhäuser (1993). &nbsp;   {{MR|1454121}} &nbsp;  {{ZBL|0860.28001}}
+
for (int k=-kmax; k<=kmax; ++k) {
|-
+
  real phi = 0.2*k*pi;
|valign="top"|{{Ref|D}}||  Richard M. Dudley, "Real analysis and probability",  Wadsworth&Brooks/Cole (1989). &nbsp; {{MR|0982264}} &nbsp;  {{ZBL|0686.60001}}
+
  real rho = 1;
|-
+
  if (k!=0) {
|valign="top"|{{Ref|M}}||  George  W.   Mackey,  "Borel structure in groups and their duals",  ''TransAmer.  Math. Soc.''  '''85''' (1957), 134–165. &nbsp; {{MR|0089999}}  &nbsp; {{ZBL|0082.11201}}
+
    rho = sin(phi)/phi;
|-
+
  }
|valign="top"|{{Ref|K}}|| Alexander  S. Kechris, "Classical  descriptive set theory", Springer-Verlag  (1995).  &nbsp; {{MR|1321597}} &nbsp; {{ZBL|0819.04002}}
+
  pair z=rho*expi(phi);
|-
+
  g=g..z;
|valign="top"|{{Ref|N}}|| Togo Nishiura, "Absolute  measurable spaces", Cambridge (2008). &nbsp; {{MR|2426721}}  &nbsp;  {{ZBL|1151.54001}}
+
}
|}
+
    
 +
draw (g);
 +
 
 +
defaultpen(0.75);
 +
draw ( (0,0)--(1.3,0), dotted, Arrow(SimpleHead,5) );
 +
dot ( (1,0) );
 +
label ( "$a$", (1,0), NE );
 +
 
 +
</asy>

Latest revision as of 07:12, 13 March 2016

[1]

Notes

  1. http://hea-www.harvard.edu/AstroStat; http://www.incagroup.org ; http://astrostatistics.psu.edu


A B C
X Y Z




$\newcommand*{\longhookrightarrow}{\lhook\joinrel\relbar\joinrel\rightarrow}$

How to Cite This Entry:
Boris Tsirelson/sandbox1. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Boris_Tsirelson/sandbox1&oldid=21225