Namespaces
Variants
Actions

Difference between revisions of "User:Boris Tsirelson/sandbox1"

From Encyclopedia of Mathematics
Jump to: navigation, search
 
(265 intermediate revisions by the same user not shown)
Line 1: Line 1:
$\newcommand{\Om}{\Omega}
+
<ref> [http://hea-www.harvard.edu/AstroStat http://hea-www.harvard.edu/AstroStat]; <nowiki> http://www.incagroup.org </nowiki>; <nowiki> http://astrostatistics.psu.edu </nowiki> </ref>
\newcommand{\A}{\mathcal A}
 
\newcommand{\B}{\mathcal B}
 
\newcommand{\M}{\mathcal M} $
 
The term '''"universally measurable"''' may be applied to
 
* a [[measurable space]];
 
* a subset of a measurable space;
 
* a [[metric space]].
 
  
'''Definition 1.''' Let $(X,\A)$ be a measurable space. A ''subset'' $A\subset X$ is called ''universally measurable'' if it is $\mu$-measurable for every finite measure $\mu$ on $(X,\A)$. In other words: $\mu_*(A)=\mu^*(A)$ where $\mu_*,\mu^*$ are the inner and outer measures for $\mu$, that is,
+
====Notes====
: $ \mu_*(A) = \max\{\mu(B):B\in\A,B\subset A\}\,,\quad
+
<references />
\mu^*(A) = \min\{\mu(B):B\in\A,B\supset A\}\,.$
 
(See {{Cite|C|Sect. 8.4}}, {{Cite|S|p. 170}}.)
 
  
Universally measurable sets evidently are a σ-algebra that contains the σ-algebra $\A$ of measurable sets.
+
-------------------------------------------
  
''Warning.'' Every measurable set is universally measurable, but an universally measurable set is generally not measurable! This terminological anomaly appears because the word "measurable" is used differently in two contexts, of measurable spaces and of measure spaces.
 
  
'''Definition 2.''' A separable ''metric space'' is called ''universally measurable'' if it is a universally measurable subset (as defined above) of its [[Metric space#completion|completion]]. Here the completion, endowed with the [[Measurable space#Borel sets|Borel σ-algebra]], is treated as a measurable space. (See {{Cite|S|p. 170}}, {{Cite|D|Sect. 11.5}}.)
+
{|
 +
| A || B || C
 +
|-
 +
| X || Y || Z
 +
|}
  
'''Definition 3.''' A ''measurable space''  is called ''universally measurable'' if it is [[Measurable space#isomorphic|isomorphic]] to some universally measurable metric space (as defined above) with the Borel σ-algebra. (See {{Cite|S|p. 171}}.)
 
  
Thus, the phrase "universally measurable space" is ambiguous; it can be interpreted as "universally measurable metric space" or "universally measurable measurable space"! The latter can be replaced with "universally measurable Borel space", but the ambiguity persists. Fortunately, the ambiguity is rather harmless by the following result.
 
  
'''Theorem 1''' (Shortt {{Cite|S|Theorem 1}}). The following two conditions on a separable metric space are equivalent:
+
-----------------------------------------
:(a) it is a universally measurable metric space;
+
-----------------------------------------
:(b) the corresponding measurable space (with the Borel σ-algebra) is universally measurable.
 
  
Evidently, (a) implies (b); surprisingly, also (b) implies (a), which  involves a Borel isomorphism (rather than isometry or homeomorphism)  between two metric spaces.
+
$\newcommand*{\longhookrightarrow}{\lhook\joinrel\relbar\joinrel\rightarrow}$
  
'''Theorem 2''' (Shortt {{Cite|S|Lemma 4}}). A [[Measurable  space#countably generated|countably generated]] [[Measurable  space#separated|separated]] measurable space $(X,\A)$ is universally  measurable if and only if for every finite measure $\mu$ on $(X,\A)$ there exists a subset $A\in\A$ of full measure (that is, $\mu(X\setminus  A)=0$) such that $A$ (treated as a [[Measurable  space#subspace|subspace]]) is itself a [[standard Borel space]].
+
<asy>
 +
size(100,100);
 +
label(scale(1.7)*'$T(\\Sigma)\hookrightarrow T(\\Sigma,X)$',(0,0));
 +
</asy>
  
====On terminology====
+
<asy>
 +
size(220,220);
  
In {{Cite|M|Sect. 6}} universally measurable spaces are called metrically standard Borel spaces.
+
import math;
  
In {{Cite|K|Sect. 21.D}} universally measurable subsets of a standard (rather than arbitrary) measurable space are defined.
+
int kmax=40;
  
In {{Cite|N|Sect. 1.1}} an absolute measurable space is defined as a separable metrizable topological space such that every its homeomorphic image in every such space (with the Borel σ-algebra) is a universally measurable subset. The corresponding measurable space (with the Borel σ-algebra) is also called an absolute measurable space in {{Cite|N|Sect. B.2}}.
+
guide g;
 +
for (int k=-kmax; k<=kmax; ++k) {
 +
  real phi = 0.2*k*pi;
 +
  real rho = 1;
 +
  if (k!=0) {
 +
    rho = sin(phi)/phi;
 +
  }
 +
  pair z=rho*expi(phi);
 +
  g=g..z;
 +
}
 +
 
 +
draw (g);
  
====References====
+
defaultpen(0.75);
 +
draw ( (0,0)--(1.3,0), dotted, Arrow(SimpleHead,5) );
 +
dot ( (1,0) );
 +
label ( "$a$", (1,0), NE );
  
{|
+
</asy>
|valign="top"|{{Ref|S}}||  Rae M. Shortt, "Universally measurable spaces: an invariance theorem and diverse characterizations", ''Fundamenta Mathematicae'' '''121''' (1984), 169–176.  &nbsp; {{MR|0765332}} &nbsp; {{ZBL|0573.28018}}
 
|-
 
|valign="top"|{{Ref|N}}|| Togo Nishiura, "Absolute measurable spaces",  Cambridge (2008). &nbsp;  {{MR|2426721}} &nbsp;  {{ZBL|1151.54001}}
 
|-
 
|valign="top"|{{Ref|C}}|| Donald L. Cohn, "Measure theory", Birkhäuser (1993). &nbsp;    {{MR|1454121}} &nbsp;  {{ZBL|0860.28001}}
 
|-
 
|valign="top"|{{Ref|K}}|| Alexander  S.  Kechris, "Classical  descriptive set theory", Springer-Verlag  (1995). &nbsp;  {{MR|1321597}} &nbsp; {{ZBL|0819.04002}}
 
|-
 
|valign="top"|{{Ref|D}}||  Richard M. Dudley, "Real analysis and probability",  Wadsworth&Brooks/Cole (1989). &nbsp; {{MR|0982264}} &nbsp;  {{ZBL|0686.60001}}
 
|-
 
|valign="top"|{{Ref|M}}||  George  W.  Mackey,  "Borel structure in groups and their duals",  ''Trans.  Amer.  Math. Soc.''  '''85''' (1957), 134–165. &nbsp; {{MR|0089999}}  &nbsp; {{ZBL|0082.11201}}
 
|}
 

Latest revision as of 07:12, 13 March 2016

[1]

Notes

  1. http://hea-www.harvard.edu/AstroStat; http://www.incagroup.org ; http://astrostatistics.psu.edu


A B C
X Y Z




$\newcommand*{\longhookrightarrow}{\lhook\joinrel\relbar\joinrel\rightarrow}$

How to Cite This Entry:
Boris Tsirelson/sandbox1. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Boris_Tsirelson/sandbox1&oldid=21133