Urysohn metrization theorem
From Encyclopedia of Mathematics
A compact or countably compact Hausdorff space is metrizable if and only if it has a countable base.
A topological space with a countable base is metrizable if and only if it is normal (cf. Normal space), or (an addition by A.N. Tikhonov) if and only if it is regular.
Comments
References
[a1] | A.V. Arkhangel'skii, V.I. Ponomarev, "Fundamentals of general topology: problems and exercises" , Reidel (1984) pp. Chapt. 5 (Translated from Russian) |
[a2] | J.L. Kelley, "General topology" , v. Nostrand (1955) pp. 125; 127 |
How to Cite This Entry:
Urysohn metrization theorem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Urysohn_metrization_theorem&oldid=11449
Urysohn metrization theorem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Urysohn_metrization_theorem&oldid=11449
This article was adapted from an original article by P.S. Aleksandrov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article