Namespaces
Variants
Actions

Difference between revisions of "Union of sets"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m
Line 1: Line 1:
 +
 
''sum of sets''
 
''sum of sets''
  
One of the basic operations on (collections of) sets. Suppose one has some (finite or infinite) collection <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095390/u0953901.png" /> of sets. Then the collection of all elements that belong to at least one of the sets in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095390/u0953902.png" /> is called the union, or, more rarely, the sum, of (the sets in) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095390/u0953903.png" />; it is denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095390/u0953904.png" />.
+
One of the basic operations on (collections of) sets. Suppose one has some (finite or infinite) collection $\mathcal{K}$ of sets. Then the collection of all elements that belong to at least one of the sets in $\mathcal{K}$ is called the union, or, more rarely, the sum, of (the sets in) $\mathcal{K}$; it is denoted by $\bigcup\mathcal{K}$.
  
  
  
 
====Comments====
 
====Comments====
In case <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095390/u0953905.png" />, the union is also denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095390/u0953906.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095390/u0953907.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095390/u0953908.png" />, or, more rarely, by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095390/u0953909.png" />.
+
In case $\mathcal{K}=\{A_\alpha:\alpha\in I\}$, the union is also denoted by $\bigcup_\alpha A_\alpha$, $\bigcup_{\alpha\in I} A_\alpha$, $\bigcup_{A\in\mathcal{K}} A$, or, more rarely, by $\sum_\alpha A_\alpha$.
  
 
In the Zermelo–Fraenkel axiom system for [[Set theory|set theory]], the sum-set axiom expresses that the union of a set of sets is a set.
 
In the Zermelo–Fraenkel axiom system for [[Set theory|set theory]], the sum-set axiom expresses that the union of a set of sets is a set.
  
If the sets <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095390/u09539010.png" /> are disjoint, then in the category <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095390/u09539011.png" /> the union of the objects <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095390/u09539012.png" /> is the sum of these objects in the categorical sense. In general, the sum of objects <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095390/u09539013.png" /> is the disjoint union <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095390/u09539014.png" />. The natural imbeddings <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095390/u09539015.png" /> are given by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095390/u09539016.png" />. Thus, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095390/u09539017.png" /> together with the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095390/u09539018.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095390/u09539019.png" />, satisfies the universal property for categorical sums: For every family of mappings <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095390/u09539020.png" /> there is a unique mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095390/u09539021.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095390/u09539022.png" />.
+
If the sets $A_\alpha$ are disjoint, then in the category $\mathbf{Set}$ the union of the objects $A_\alpha$ is the sum of these objects in the categorical sense. In general, the sum of objects $X_\alpha$ is the disjoint union $\coprod_\alpha X_\alpha =\{(x,a):x\in X_\alpha\}$. The natural imbeddings $i_\alpha:X_\alpha\to\coprod_\alpha X_\alpha$ are given by $i_\alpha(x)=(x,\alpha)$. Thus, $\coprod_\alpha X_\alpha$ together with the $i_\alpha$, $\alpha\in I$, satisfies the universal property for categorical sums: For every family of mappings $f_\alpha:X_\alpha\to Y$ there is a unique mapping $f:\coprod_\alpha X_\alpha\to Y$ such that $fi_\alpha = f_\alpha$.
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> K. Kuratowski,   "Introduction to set theory and topology" , Pergamon (1961) pp. 25 (Translated from French)</TD></TR></table>
+
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> K. Kuratowski, "Introduction to set theory and topology" , Pergamon (1961) pp. 25 (Translated from French)</TD></TR></table>

Revision as of 10:43, 4 February 2012

sum of sets

One of the basic operations on (collections of) sets. Suppose one has some (finite or infinite) collection $\mathcal{K}$ of sets. Then the collection of all elements that belong to at least one of the sets in $\mathcal{K}$ is called the union, or, more rarely, the sum, of (the sets in) $\mathcal{K}$; it is denoted by $\bigcup\mathcal{K}$.


Comments

In case $\mathcal{K}=\{A_\alpha:\alpha\in I\}$, the union is also denoted by $\bigcup_\alpha A_\alpha$, $\bigcup_{\alpha\in I} A_\alpha$, $\bigcup_{A\in\mathcal{K}} A$, or, more rarely, by $\sum_\alpha A_\alpha$.

In the Zermelo–Fraenkel axiom system for set theory, the sum-set axiom expresses that the union of a set of sets is a set.

If the sets $A_\alpha$ are disjoint, then in the category $\mathbf{Set}$ the union of the objects $A_\alpha$ is the sum of these objects in the categorical sense. In general, the sum of objects $X_\alpha$ is the disjoint union $\coprod_\alpha X_\alpha =\{(x,a):x\in X_\alpha\}$. The natural imbeddings $i_\alpha:X_\alpha\to\coprod_\alpha X_\alpha$ are given by $i_\alpha(x)=(x,\alpha)$. Thus, $\coprod_\alpha X_\alpha$ together with the $i_\alpha$, $\alpha\in I$, satisfies the universal property for categorical sums: For every family of mappings $f_\alpha:X_\alpha\to Y$ there is a unique mapping $f:\coprod_\alpha X_\alpha\to Y$ such that $fi_\alpha = f_\alpha$.

References

[1] K. Kuratowski, "Introduction to set theory and topology" , Pergamon (1961) pp. 25 (Translated from French)
How to Cite This Entry:
Union of sets. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Union_of_sets&oldid=17340
This article was adapted from an original article by M.I. Voitsekhovskii (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article