Namespaces
Variants
Actions

Difference between revisions of "Triangulation"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
A triangulation of a polyhedron, or rectilinear triangulation, is a representation of the polyhedron (cf. [[Polyhedron, abstract|Polyhedron, abstract]]) as the space of a geometric [[Simplicial complex|simplicial complex]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094170/t0941701.png" />, that is, a decomposition of it into closed simplices such that any two simplices either do not intersect or intersect along a common face. Rectilinear triangulations of polyhedra serve as the main tool for studying them. Any polyhedron has a triangulation and any two triangulations of it have a common subdivision.
+
<!--
 +
t0941701.png
 +
$#A+1 = 70 n = 0
 +
$#C+1 = 70 : ~/encyclopedia/old_files/data/T094/T.0904170 Triangulation
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
The closed star <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094170/t0941702.png" /> of a simplex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094170/t0941703.png" /> in a triangulation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094170/t0941704.png" /> is the union of the simplices of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094170/t0941705.png" /> containing <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094170/t0941706.png" />. There is a representation of the closed star of a simplex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094170/t0941707.png" /> as the union (or join, cf. [[Union of sets|Union of sets]]) of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094170/t0941708.png" /> and its [[Link|link]]: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094170/t0941709.png" />. In particular, the star of a vertex is a [[Cone|cone]] over its link. If a simplex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094170/t09417010.png" /> is represented as the join of two of its faces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094170/t09417011.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094170/t09417012.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094170/t09417013.png" />. The link of a simplex does not depend on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094170/t09417014.png" />: If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094170/t09417015.png" /> is a simplex in rectilinear triangulations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094170/t09417016.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094170/t09417017.png" /> of the same polyhedron, then the polyhedra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094170/t09417018.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094170/t09417019.png" /> are PL-homeomorphic. The open star of a simplex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094170/t09417020.png" /> is defined as the union of the interiors of those simplices of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094170/t09417021.png" /> containing <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094170/t09417022.png" /> as a face. The open stars of the vertices of a triangulation of a polyhedron <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094170/t09417023.png" /> form an open covering of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094170/t09417024.png" />. The nerve of this covering (cf. [[Nerve of a family of sets|Nerve of a family of sets]]) is simplicially isomorphic to the triangulation. Two triangulations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094170/t09417025.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094170/t09417026.png" /> of polyhedra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094170/t09417027.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094170/t09417028.png" /> are combinatorially equivalent if certain subdivisions of them are simplicially isomorphic. In order that two triangulations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094170/t09417029.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094170/t09417030.png" /> be combinatorially equivalent it is necessary and sufficient that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094170/t09417031.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094170/t09417032.png" /> be PL-homeomorphic. A triangulation of a manifold is said to be combinatorial if the star of any of its vertices is combinatorially equivalent to a simplex. In this case the star of any simplex of the triangulation is also combinatorially equivalent to a simplex.
+
{{TEX|auto}}
 +
{{TEX|done}}
  
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094170/t09417033.png" /> is a closed subpolyhedron of a polyhedron <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094170/t09417034.png" />, then any triangulation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094170/t09417035.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094170/t09417036.png" /> can be extended to some triangulation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094170/t09417037.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094170/t09417038.png" />. In this case one says that the pair of geometric simplicial complexes <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094170/t09417039.png" /> triangulates the pair <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094170/t09417040.png" />. A triangulation of the direct product <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094170/t09417041.png" /> of two simplices <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094170/t09417042.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094170/t09417043.png" /> can be constructed as follows. The vertices of the triangulation are the points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094170/t09417044.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094170/t09417045.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094170/t09417046.png" /> are the vertices of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094170/t09417047.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094170/t09417048.png" /> are the vertices of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094170/t09417049.png" />. The vertices <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094170/t09417050.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094170/t09417051.png" />, span a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094170/t09417052.png" />-dimensional simplex if and only if none of these coincide and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094170/t09417053.png" />. A triangulation of the direct product of two simplicial complexes with ordered vertices can be carried out in the same way.
+
A triangulation of a polyhedron, or rectilinear triangulation, is a representation of the polyhedron (cf. [[Polyhedron, abstract|Polyhedron, abstract]]) as the space of a geometric [[Simplicial complex|simplicial complex]]  $  K $,
 +
that is, a decomposition of it into closed simplices such that any two simplices either do not intersect or intersect along a common face. Rectilinear triangulations of polyhedra serve as the main tool for studying them. Any polyhedron has a triangulation and any two triangulations of it have a common subdivision.
  
A triangulation of a topological space, or curvilinear triangulation, is a pair <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094170/t09417054.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094170/t09417055.png" /> is a geometric simplicial complex and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094170/t09417056.png" /> is a homeomorphism. Two triangulations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094170/t09417057.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094170/t09417058.png" /> of a space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094170/t09417059.png" /> coincide if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094170/t09417060.png" /> is a simplicial isomorphism. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094170/t09417061.png" /> is a simplex of a complex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094170/t09417062.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094170/t09417063.png" /> is a triangulation of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094170/t09417064.png" />, then the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094170/t09417065.png" /> endowed with the homeomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094170/t09417066.png" /> is called a topological simplex. The star and the link of a topological simplex of a triangulated topological space are defined in the same way as in the case of rectilinear triangulations. If a point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094170/t09417067.png" /> is a vertex of triangulations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094170/t09417068.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094170/t09417069.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094170/t09417070.png" />, then its links in these triangulations are homotopy equivalent.
+
The closed star  $  \mathop{\rm St} ( \sigma , T) $
 +
of a simplex  $  \sigma $
 +
in a triangulation $  T $
 +
is the union of the simplices of  $  T $
 +
containing  $  \sigma $.
 +
There is a representation of the closed star of a simplex  $  \sigma \in T $
 +
as the union (or join, cf. [[Union of sets|Union of sets]]) of  $  \sigma $
 +
and its [[Link|link]]:  $  \mathop{\rm St} ( \sigma , T) = \sigma \star  \mathop{\rm lk} ( \delta , T) $.
 +
In particular, the star of a vertex is a [[Cone|cone]] over its link. If a simplex  $  \sigma \in T $
 +
is represented as the join of two of its faces  $  \delta $
 +
and  $  \gamma $,
 +
then  $  \mathop{\rm lk} ( \sigma , T) = \mathop{\rm lk} ( \delta ,  \mathop{\rm lk} ( \gamma , T)) $.
 +
The link of a simplex does not depend on  $  T $:  
 +
If  $  \sigma $
 +
is a simplex in rectilinear triangulations  $  T _ {1} $,
 +
$  T _ {2} $
 +
of the same polyhedron, then the polyhedra  $  |  \mathop{\rm lk} ( \sigma , T _ {1} ) | $
 +
and  $  |  \mathop{\rm lk} ( \sigma , T _ {2} ) | $
 +
are PL-homeomorphic. The open star of a simplex  $  \sigma \in T $
 +
is defined as the union of the interiors of those simplices of  $  T $
 +
containing  $  \sigma $
 +
as a face. The open stars of the vertices of a triangulation of a polyhedron  $  P $
 +
form an open covering of  $  P $.
 +
The nerve of this covering (cf. [[Nerve of a family of sets|Nerve of a family of sets]]) is simplicially isomorphic to the triangulation. Two triangulations  $  T _ {1} $
 +
and  $  T _ {2} $
 +
of polyhedra  $  P _ {1} $
 +
and  $  P _ {2} $
 +
are combinatorially equivalent if certain subdivisions of them are simplicially isomorphic. In order that two triangulations  $  T _ {1} $
 +
and  $  T _ {2} $
 +
be combinatorially equivalent it is necessary and sufficient that  $  P _ {1} $
 +
and  $  P _ {2} $
 +
be PL-homeomorphic. A triangulation of a manifold is said to be combinatorial if the star of any of its vertices is combinatorially equivalent to a simplex. In this case the star of any simplex of the triangulation is also combinatorially equivalent to a simplex.
 +
 
 +
If  $  P $
 +
is a closed subpolyhedron of a polyhedron  $  Q $,
 +
then any triangulation  $  K $
 +
of  $  P $
 +
can be extended to some triangulation  $  L $
 +
of  $  Q $.
 +
In this case one says that the pair of geometric simplicial complexes  $  ( L, K) $
 +
triangulates the pair  $  ( Q, P) $.
 +
A triangulation of the direct product  $  \sigma \times \delta \in \mathbf R  ^ {m} \times \mathbf R  ^ {n} $
 +
of two simplices  $  \sigma \in \mathbf R  ^ {m} $,
 +
$  \delta \in \mathbf R  ^ {n} $
 +
can be constructed as follows. The vertices of the triangulation are the points  $  c _ {ij} = ( a _ {i} b _ {j} ) $,
 +
0 \leq  i \leq  \mathop{\rm dim}  \delta $,
 +
where  $  a _ {i} $
 +
are the vertices of  $  \sigma $
 +
and  $  g _ {j} $
 +
are the vertices of  $  \delta $.  
 +
The vertices  $  c _ {i _ {0}  j _ {0} } \dots c _ {i _ {p}  j _ {p} } $,
 +
where  $  i _ {0} \leq  \dots \leq  i _ {k} $,
 +
span a  $  k $-
 +
dimensional simplex if and only if none of these coincide and  $  j _ {0} \leq  \dots \leq  j _ {k} $.  
 +
A triangulation of the direct product of two simplicial complexes with ordered vertices can be carried out in the same way.
 +
 
 +
A triangulation of a topological space, or curvilinear triangulation, is a pair  $  ( K, f  ) $,
 +
where  $  K $
 +
is a geometric simplicial complex and $  f: | K | \rightarrow X $
 +
is a homeomorphism. Two triangulations $  ( K, f  ) $
 +
and $  ( L, g) $
 +
of a space $  X $
 +
coincide if $  g  ^ {-} 1 f: | K | \rightarrow | L | $
 +
is a simplicial isomorphism. If $  \sigma $
 +
is a simplex of a complex $  K $
 +
and $  ( K, f  ) $
 +
is a triangulation of $  X $,  
 +
then the space $  f ( \sigma ) $
 +
endowed with the homeomorphism $  f \ \mid  _  \sigma  : \sigma \rightarrow f ( \sigma ) $
 +
is called a topological simplex. The star and the link of a topological simplex of a triangulated topological space are defined in the same way as in the case of rectilinear triangulations. If a point $  a \in X $
 +
is a vertex of triangulations $  ( K, f  ) $
 +
and $  ( L, g) $
 +
of $  X $,  
 +
then its links in these triangulations are homotopy equivalent.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  P.S. Aleksandrov,  "Combinatorial topology" , Graylock , Rochester  (1956)  (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  D.B. Fuks,  V.A. Rokhlin,  "Beginner's course in topology. Geometric chapters" , Springer  (1981)  (Translated from Russian)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  P.S. Aleksandrov,  "Combinatorial topology" , Graylock , Rochester  (1956)  (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  D.B. Fuks,  V.A. Rokhlin,  "Beginner's course in topology. Geometric chapters" , Springer  (1981)  (Translated from Russian)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
 
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  E.C. Zeeman,  "Seminar on combinatorial topology" , IHES  (1963)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  H. Seifert,  W. Threlfall,  "Lehrbuch der Topologie" , Chelsea, reprint  (1970)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  I.M. Singer,  J.A. Thorpe,  "Lecture notes on elementary topology and geometry" , Springer  (1967)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  L.C. Glaser,  "Geometrical combinatorial topology" , '''1–2''' , v. Nostrand  (1970)</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  E.C. Zeeman,  "Seminar on combinatorial topology" , IHES  (1963)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  H. Seifert,  W. Threlfall,  "Lehrbuch der Topologie" , Chelsea, reprint  (1970)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  I.M. Singer,  J.A. Thorpe,  "Lecture notes on elementary topology and geometry" , Springer  (1967)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  L.C. Glaser,  "Geometrical combinatorial topology" , '''1–2''' , v. Nostrand  (1970)</TD></TR></table>

Latest revision as of 08:26, 6 June 2020


A triangulation of a polyhedron, or rectilinear triangulation, is a representation of the polyhedron (cf. Polyhedron, abstract) as the space of a geometric simplicial complex $ K $, that is, a decomposition of it into closed simplices such that any two simplices either do not intersect or intersect along a common face. Rectilinear triangulations of polyhedra serve as the main tool for studying them. Any polyhedron has a triangulation and any two triangulations of it have a common subdivision.

The closed star $ \mathop{\rm St} ( \sigma , T) $ of a simplex $ \sigma $ in a triangulation $ T $ is the union of the simplices of $ T $ containing $ \sigma $. There is a representation of the closed star of a simplex $ \sigma \in T $ as the union (or join, cf. Union of sets) of $ \sigma $ and its link: $ \mathop{\rm St} ( \sigma , T) = \sigma \star \mathop{\rm lk} ( \delta , T) $. In particular, the star of a vertex is a cone over its link. If a simplex $ \sigma \in T $ is represented as the join of two of its faces $ \delta $ and $ \gamma $, then $ \mathop{\rm lk} ( \sigma , T) = \mathop{\rm lk} ( \delta , \mathop{\rm lk} ( \gamma , T)) $. The link of a simplex does not depend on $ T $: If $ \sigma $ is a simplex in rectilinear triangulations $ T _ {1} $, $ T _ {2} $ of the same polyhedron, then the polyhedra $ | \mathop{\rm lk} ( \sigma , T _ {1} ) | $ and $ | \mathop{\rm lk} ( \sigma , T _ {2} ) | $ are PL-homeomorphic. The open star of a simplex $ \sigma \in T $ is defined as the union of the interiors of those simplices of $ T $ containing $ \sigma $ as a face. The open stars of the vertices of a triangulation of a polyhedron $ P $ form an open covering of $ P $. The nerve of this covering (cf. Nerve of a family of sets) is simplicially isomorphic to the triangulation. Two triangulations $ T _ {1} $ and $ T _ {2} $ of polyhedra $ P _ {1} $ and $ P _ {2} $ are combinatorially equivalent if certain subdivisions of them are simplicially isomorphic. In order that two triangulations $ T _ {1} $ and $ T _ {2} $ be combinatorially equivalent it is necessary and sufficient that $ P _ {1} $ and $ P _ {2} $ be PL-homeomorphic. A triangulation of a manifold is said to be combinatorial if the star of any of its vertices is combinatorially equivalent to a simplex. In this case the star of any simplex of the triangulation is also combinatorially equivalent to a simplex.

If $ P $ is a closed subpolyhedron of a polyhedron $ Q $, then any triangulation $ K $ of $ P $ can be extended to some triangulation $ L $ of $ Q $. In this case one says that the pair of geometric simplicial complexes $ ( L, K) $ triangulates the pair $ ( Q, P) $. A triangulation of the direct product $ \sigma \times \delta \in \mathbf R ^ {m} \times \mathbf R ^ {n} $ of two simplices $ \sigma \in \mathbf R ^ {m} $, $ \delta \in \mathbf R ^ {n} $ can be constructed as follows. The vertices of the triangulation are the points $ c _ {ij} = ( a _ {i} b _ {j} ) $, $ 0 \leq i \leq \mathop{\rm dim} \delta $, where $ a _ {i} $ are the vertices of $ \sigma $ and $ g _ {j} $ are the vertices of $ \delta $. The vertices $ c _ {i _ {0} j _ {0} } \dots c _ {i _ {p} j _ {p} } $, where $ i _ {0} \leq \dots \leq i _ {k} $, span a $ k $- dimensional simplex if and only if none of these coincide and $ j _ {0} \leq \dots \leq j _ {k} $. A triangulation of the direct product of two simplicial complexes with ordered vertices can be carried out in the same way.

A triangulation of a topological space, or curvilinear triangulation, is a pair $ ( K, f ) $, where $ K $ is a geometric simplicial complex and $ f: | K | \rightarrow X $ is a homeomorphism. Two triangulations $ ( K, f ) $ and $ ( L, g) $ of a space $ X $ coincide if $ g ^ {-} 1 f: | K | \rightarrow | L | $ is a simplicial isomorphism. If $ \sigma $ is a simplex of a complex $ K $ and $ ( K, f ) $ is a triangulation of $ X $, then the space $ f ( \sigma ) $ endowed with the homeomorphism $ f \ \mid _ \sigma : \sigma \rightarrow f ( \sigma ) $ is called a topological simplex. The star and the link of a topological simplex of a triangulated topological space are defined in the same way as in the case of rectilinear triangulations. If a point $ a \in X $ is a vertex of triangulations $ ( K, f ) $ and $ ( L, g) $ of $ X $, then its links in these triangulations are homotopy equivalent.

References

[1] P.S. Aleksandrov, "Combinatorial topology" , Graylock , Rochester (1956) (Translated from Russian)
[2] D.B. Fuks, V.A. Rokhlin, "Beginner's course in topology. Geometric chapters" , Springer (1981) (Translated from Russian)

Comments

References

[a1] E.C. Zeeman, "Seminar on combinatorial topology" , IHES (1963)
[a2] H. Seifert, W. Threlfall, "Lehrbuch der Topologie" , Chelsea, reprint (1970)
[a3] I.M. Singer, J.A. Thorpe, "Lecture notes on elementary topology and geometry" , Springer (1967)
[a4] L.C. Glaser, "Geometrical combinatorial topology" , 1–2 , v. Nostrand (1970)
How to Cite This Entry:
Triangulation. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Triangulation&oldid=49033
This article was adapted from an original article by S.V. Matveev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article