# Translation-invariant metric

From Encyclopedia of Mathematics

The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

*invariant metric*

A metric $\rho$ on a vector or linear space $X$ such that $\rho(x+z,y+z) = \rho(x,y)$ for all $x,y,z \in X$. A norm or an $F$-norm, $\Vert \cdot \Vert$ (cf. (the editional comments to) Universal space for a definition of this notion), defines a translation-invariant metric $\rho(x,y) = \Vert x-y \Vert$. If $(X,\rho)$ is a metric linear space, i.e. a vector space with a metric such that addition and scalar multiplication are continuous, then there is an invariant metric $\rho'$ on $X$ that is equivalent to the original one, [a2]. Two metrics $\rho$, $\rho'$ on $X$ are equivalent if they induce the same topology.

#### References

[a1] | S. Rolewicz, "Metric linear spaces" , Reidel (1987) pp. §1.1 |

[a2] | S. Kakutani, "Über die Metrisation der topologischen Gruppen" Proc. Imp. Acad. Tokyo , 12 (1936) pp. 82–84 |

**How to Cite This Entry:**

Translation-invariant metric.

*Encyclopedia of Mathematics.*URL: http://encyclopediaofmath.org/index.php?title=Translation-invariant_metric&oldid=40175