Namespaces
Variants
Actions

Difference between revisions of "Transition-operator semi-group"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
(3 intermediate revisions by 2 users not shown)
Line 1: Line 1:
The [[Semi-group of operators|semi-group of operators]] generated by the [[Transition function|transition function]] of a [[Markov process|Markov process]]. From the transition function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t0937701.png" /> of a homogeneous Markov process <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t0937702.png" /> in a state space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t0937703.png" /> one can construct certain semi-groups of linear operators <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t0937704.png" /> acting in some Banach space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t0937705.png" /> [[#References|[1]]]. Very often, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t0937706.png" /> is the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t0937707.png" /> of bounded real-valued measurable functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t0937708.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t0937709.png" /> with the uniform norm (or for a [[Feller process|Feller process]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t09377010.png" />, the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t09377011.png" /> of continuous functions with the same norm) or else the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t09377012.png" /> of finite countably-additive functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t09377013.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t09377014.png" /> with the complete variation as norm. In the first two cases one puts
+
<!--
 +
t0937701.png
 +
$#A+1 = 67 n = 0
 +
$#C+1 = 67 : ~/encyclopedia/old_files/data/T093/T.0903770 Transition\AAhoperator semi\AAhgroup
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t09377015.png" /></td> </tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
 +
{{MSC|60J35|47D07}}
 +
 
 +
[[Category:Markov processes]]
 +
 
 +
The [[Semi-group of operators|semi-group of operators]] generated by the [[Transition function|transition function]] of a [[Markov process|Markov process]]. From the transition function  $  P( t, x, A) $
 +
of a homogeneous Markov process  $  X = ( x _ {t} , \zeta , {\mathcal F} _ {t} , {\mathsf P} _ {x} ) $
 +
in a state space  $  ( E, {\mathcal B}) $
 +
one can construct certain semi-groups of linear operators  $  P  ^ {t} $
 +
acting in some Banach space  $  B ${{
 +
Cite|F}}. Very often,  $  B $
 +
is the space  $  B ( E) $
 +
of bounded real-valued measurable functions  $  f $
 +
in  $  E $
 +
with the uniform norm (or for a [[Feller process|Feller process]]  $  X $,
 +
the space  $  C ( E) $
 +
of continuous functions with the same norm) or else the space  $  V( E) $
 +
of finite countably-additive functions  $  \phi $
 +
on  $  {\mathcal B} $
 +
with the complete variation as norm. In the first two cases one puts
 +
 
 +
$$
 +
P  ^ {t} f( x)  =  \int\limits _ { E } f( y)  {\mathsf P} ( t, x, dy);
 +
$$
  
 
and in the third
 
and in the third
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t09377016.png" /></td> </tr></table>
+
$$
 +
P  ^ {t} \phi ( A)  = \int\limits _ { E } {\mathsf P} ( t, y, A) \phi ( dy)
 +
$$
  
(here <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t09377017.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t09377018.png" /> belong to the corresponding spaces, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t09377019.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t09377020.png" />). In all these cases the semi-group property holds: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t09377021.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t09377022.png" />, and any of the three semi-groups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t09377023.png" /> is called a transition-operator semi-group.
+
(here $  f $
 +
and $  \phi $
 +
belong to the corresponding spaces, $  x \in E $,  
 +
$  A \in {\mathcal B} $).  
 +
In all these cases the semi-group property holds: $  P  ^ {t} P  ^ {s} = P  ^ {t+} s $,
 +
$  s, t \geq  0 $,  
 +
and any of the three semi-groups $  \{ P  ^ {t} \} $
 +
is called a transition-operator semi-group.
  
In what follows, only the first case is considered. The usual definition of the infinitesimal generator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t09377024.png" /> of the semi-group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t09377025.png" /> (this is also the infinitesimal generator of the process) is as follows:
+
In what follows, only the first case is considered. The usual definition of the infinitesimal generator $  A $
 +
of the semi-group $  \{ P  ^ {t} \} $(
 +
this is also the infinitesimal generator of the process) is as follows:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t09377026.png" /></td> </tr></table>
+
$$
 +
Af  = \lim\limits _ {t \downarrow 0
 +
\frac{1}{t}
 +
( P  ^ {t} f - f  )
 +
$$
  
for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t09377027.png" /> for which this limit exists as a limit in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t09377028.png" />. It is assumed that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t09377029.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t09377030.png" /> is a measurable function of the pair of variables <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t09377031.png" />, and one introduces the resolvent <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t09377032.png" /> of the process <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t09377033.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t09377034.png" />, by:
+
for all $  f \in B ( E) $
 +
for which this limit exists as a limit in $  B ( E) $.  
 +
It is assumed that $  P( t, x, A) $
 +
for $  A \in {\mathcal B} $
 +
is a measurable function of the pair of variables $  ( t, x) $,
 +
and one introduces the resolvent $  R  ^  \alpha  $
 +
of the process $  X $,
 +
$  \alpha > 0 $,  
 +
by:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t09377035.png" /></td> <td valign="top" style="width:5%;text-align:right;">(*)</td></tr></table>
+
$$ \tag{* }
 +
R  ^  \alpha  f  = \int\limits _ { 0 } ^  \infty  e ^ {- \alpha t } P  ^ {t} f  dt ,\ \
 +
f \in B ( E).
 +
$$
  
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t09377036.png" /> as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t09377037.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t09377038.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t09377039.png" />. Under certain assumptions the integral (*) exists also for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t09377040.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t09377041.png" /> satisfies the "Poisson equation"  
+
If $  \| P  ^ {t} f- f \| \rightarrow 0 $
 +
as  $  t \downarrow 0 $,  
 +
then $  Ag = \alpha g - f $,  
 +
where $  g = R  ^  \alpha  f $.  
 +
Under certain assumptions the integral (*) exists also for $  \alpha = 0 $,  
 +
and $  g = R  ^ {0} f $
 +
satisfies the "Poisson equation"  
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t09377042.png" /></td> </tr></table>
+
$$
 +
Ag  = - f
 +
$$
  
(for this reason, in particular, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t09377043.png" /> is called the potential of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t09377044.png" />).
+
(for this reason, in particular, $  R  ^ {0} f $
 +
is called the potential of $  f  $).
  
Knowledge of the infinitesimal generator enables one to derive important characteristics of the initial process; the classification of Markov processes amounts to the description of their corresponding infinitesimal generators [[#References|[2]]], [[#References|[3]]]. Also, using the infinitesimal generator one can find the mean values of various functionals. For example, under certain assumptions the function
+
Knowledge of the infinitesimal generator enables one to derive important characteristics of the initial process; the classification of Markov processes amounts to the description of their corresponding infinitesimal generators {{Cite|Dy}}, {{Cite|GS}}. Also, using the infinitesimal generator one can find the mean values of various functionals. For example, under certain assumptions the function
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t09377045.png" /></td> </tr></table>
+
$$
 +
v( t, x)  = {\mathsf E} _ {x} \left [  \mathop{\rm exp} \left \{ \int\limits _ { 0 } ^ { {t }  \wedge \zeta } c( x _ {s} )  ds \right \} f( x _ {t \wedge \zeta }  ) \right ] ,\ \
 +
t \geq  0,\  x \in E,
 +
$$
  
is a unique solution to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t09377046.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t09377047.png" />, which is a not-too-rapidly-increasing function of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t09377048.png" />. Here <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t09377049.png" /> is the mathematical expectation corresponding to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t09377050.png" />, while <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t09377051.png" />.
+
is a unique solution to $  v _ {t}  ^  \prime  = Av + cv $,
 +
$  v( 0, x) = f( x) $,  
 +
which is a not-too-rapidly-increasing function of t $.  
 +
Here $  {\mathsf E} _ {x} $
 +
is the mathematical expectation corresponding to $  {\mathsf P} _ {x} $,  
 +
while $  t \wedge \zeta = \min ( t, \zeta ) $.
  
The operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t09377052.png" /> is related to the characteristic operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t09377053.png" /> [[#References|[2]]]. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t09377054.png" /> be a Markov process that is right continuous in a topological space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t09377055.png" />. For a Borel function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t09377056.png" /> one puts
+
The operator $  A $
 +
is related to the characteristic operator $  \mathfrak A ${{
 +
Cite|Dy}}. Let $  X $
 +
be a Markov process that is right continuous in a topological space $  E $.  
 +
For a Borel function $  f $
 +
one puts
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t09377057.png" /></td> </tr></table>
+
$$
 +
\mathfrak A f( x)  = \lim\limits _ {U \downarrow x }  \left [
 +
\frac{ {\mathsf E} _ {x} f( x _  \tau  ) -
 +
f( x) }{ {\mathsf E} _ {x} \tau }
 +
\right ] ,
 +
$$
  
if the limit exists for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t09377058.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t09377059.png" /> runs through a system of neighbourhoods of the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t09377060.png" /> contracting towards <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t09377061.png" /> and where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t09377062.png" /> is the moment of first exit of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t09377063.png" /> from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t09377064.png" /> (if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t09377065.png" />, the fraction in the limit is set equal to zero). In many cases the calculation of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t09377066.png" /> amounts to calculating <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t09377067.png" />.
+
if the limit exists for all $  x \in E $,  
 +
where $  U $
 +
runs through a system of neighbourhoods of the point $  x $
 +
contracting towards $  x $
 +
and where $  \tau $
 +
is the moment of first exit of $  X $
 +
from $  U $(
 +
if $  {\mathsf E} _ {x} \tau = \infty $,  
 +
the fraction in the limit is set equal to zero). In many cases the calculation of $  Af $
 +
amounts to calculating $  \mathfrak A f $.
  
 
====References====
 
====References====
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  W. Feller,   "The parabolic differential equations and the associated semi-groups of transformations" ''Ann. of Math.'' , '''55''' (1952) pp. 468–519</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  E.B. Dynkin,   "Foundations of the theory of Markov processes" , Springer (1961) (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  I.I. [I.I. Gikhman] Gihman,   A.V. [A.V. Skorokhod] Skorohod,   "The theory of stochastic processes" , '''2''' , Springer (1975) (Translated from Russian)</TD></TR></table>
+
{|
 
+
|valign="top"|{{Ref|F}}|| W. Feller, "The parabolic differential equations and the associated semi-groups of transformations" ''Ann. of Math.'' , '''55''' (1952) pp. 468–519 {{MR|0047886}} {{ZBL|}}
 
+
|-
 +
|valign="top"|{{Ref|Dy}}|| E.B. Dynkin, "Foundations of the theory of Markov processes" , Springer (1961) (Translated from Russian) {{MR|0131898}} {{ZBL|}}
 +
|-
 +
|valign="top"|{{Ref|GS}}|| I.I. Gihman, A.V. Skorohod, "The theory of stochastic processes" , '''2''' , Springer (1975) (Translated from Russian) {{MR|0375463}} {{ZBL|0305.60027}}
 +
|}
  
 
====Comments====
 
====Comments====
 
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  R.M. Blumenthal,   R.K. Getoor,   "Markov processes and potential theory" , Acad. Press (1968)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  J.L. Doob,   "Classical potential theory and its probabilistic counterpart" , Springer (1984) pp. 390</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  E.B. Dynkin,   "Markov processes" , '''1''' , Springer (1965) (Translated from Russian)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"W. Feller,   "An introduction to probability theory and its applications" , '''1–2''' , Wiley (1966)</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top">  M. Loève,   "Probability theory" , '''II''' , Springer (1978)</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top">  C. Dellacherie,   P.A. Meyer,   "Probabilities and potential" , '''1–3''' , North-Holland (1978–1988) pp. Chapts. XII-XVI (Translated from French)</TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top">  M.J. Sharpe,   "General theory of Markov processes" , Acad. Press (1988)</TD></TR><TR><TD valign="top">[a8]</TD> <TD valign="top"S. Albeverio,   Zh.M. Ma,   "A note on quasicontinuous kernels representing quasilinear positive maps" ''Forum Math.'' , '''3''' (1991) pp. 389–400</TD></TR></table>
+
{|
 +
|valign="top"|{{Ref|BG}}|| R.M. Blumenthal, R.K. Getoor, "Markov processes and potential theory" , Acad. Press (1968) {{MR|0264757}} {{ZBL|0169.49204}}
 +
|-
 +
|valign="top"|{{Ref|Do}}|| J.L. Doob, "Classical potential theory and its probabilistic counterpart" , Springer (1984) pp. 390 {{MR|0731258}} {{ZBL|0549.31001}}
 +
|-
 +
|valign="top"|{{Ref|Dy2}}|| E.B. Dynkin, "Markov processes" , '''1''' , Springer (1965) (Translated from Russian) {{MR|0193671}} {{ZBL|0132.37901}}
 +
|-
 +
|valign="top"|{{Ref|F2}}|| W. Feller, "An introduction to probability theory and its applications" , '''1–2''' , Wiley (1966) {{MR|0210154}} {{ZBL|0138.10207}}
 +
|-
 +
|valign="top"|{{Ref|L}}|| M. Loève, "Probability theory" , '''II''' , Springer (1978) {{MR|0651017}} {{MR|0651018}} {{ZBL|0385.60001}}
 +
|-
 +
|valign="top"|{{Ref|DM}}|| C. Dellacherie, P.A. Meyer, "Probabilities and potential" , '''1–3''' , North-Holland (1978–1988) pp. Chapts. XII-XVI (Translated from French) {{MR|0939365}} {{MR|0898005}} {{MR|0727641}} {{MR|0745449}} {{MR|0566768}} {{MR|0521810}} {{ZBL|0716.60001}} {{ZBL|0494.60002}} {{ZBL|0494.60001}}
 +
|-
 +
|valign="top"|{{Ref|S}}|| M.J. Sharpe, "General theory of Markov processes" , Acad. Press (1988) {{MR|0958914}} {{ZBL|0649.60079}}
 +
|-
 +
|valign="top"|{{Ref|AM}}|| S. Albeverio, Zh.M. Ma, "A note on quasicontinuous kernels representing quasilinear positive maps" ''Forum Math.'' , '''3''' (1991) pp. 389–400
 +
|}

Latest revision as of 08:26, 6 June 2020


2020 Mathematics Subject Classification: Primary: 60J35 Secondary: 47D07 [MSN][ZBL]

The semi-group of operators generated by the transition function of a Markov process. From the transition function $ P( t, x, A) $ of a homogeneous Markov process $ X = ( x _ {t} , \zeta , {\mathcal F} _ {t} , {\mathsf P} _ {x} ) $ in a state space $ ( E, {\mathcal B}) $ one can construct certain semi-groups of linear operators $ P ^ {t} $ acting in some Banach space $ B $[F]. Very often, $ B $ is the space $ B ( E) $ of bounded real-valued measurable functions $ f $ in $ E $ with the uniform norm (or for a Feller process $ X $, the space $ C ( E) $ of continuous functions with the same norm) or else the space $ V( E) $ of finite countably-additive functions $ \phi $ on $ {\mathcal B} $ with the complete variation as norm. In the first two cases one puts

$$ P ^ {t} f( x) = \int\limits _ { E } f( y) {\mathsf P} ( t, x, dy); $$

and in the third

$$ P ^ {t} \phi ( A) = \int\limits _ { E } {\mathsf P} ( t, y, A) \phi ( dy) $$

(here $ f $ and $ \phi $ belong to the corresponding spaces, $ x \in E $, $ A \in {\mathcal B} $). In all these cases the semi-group property holds: $ P ^ {t} P ^ {s} = P ^ {t+} s $, $ s, t \geq 0 $, and any of the three semi-groups $ \{ P ^ {t} \} $ is called a transition-operator semi-group.

In what follows, only the first case is considered. The usual definition of the infinitesimal generator $ A $ of the semi-group $ \{ P ^ {t} \} $( this is also the infinitesimal generator of the process) is as follows:

$$ Af = \lim\limits _ {t \downarrow 0 } \frac{1}{t} ( P ^ {t} f - f ) $$

for all $ f \in B ( E) $ for which this limit exists as a limit in $ B ( E) $. It is assumed that $ P( t, x, A) $ for $ A \in {\mathcal B} $ is a measurable function of the pair of variables $ ( t, x) $, and one introduces the resolvent $ R ^ \alpha $ of the process $ X $, $ \alpha > 0 $, by:

$$ \tag{* } R ^ \alpha f = \int\limits _ { 0 } ^ \infty e ^ {- \alpha t } P ^ {t} f dt ,\ \ f \in B ( E). $$

If $ \| P ^ {t} f- f \| \rightarrow 0 $ as $ t \downarrow 0 $, then $ Ag = \alpha g - f $, where $ g = R ^ \alpha f $. Under certain assumptions the integral (*) exists also for $ \alpha = 0 $, and $ g = R ^ {0} f $ satisfies the "Poisson equation"

$$ Ag = - f $$

(for this reason, in particular, $ R ^ {0} f $ is called the potential of $ f $).

Knowledge of the infinitesimal generator enables one to derive important characteristics of the initial process; the classification of Markov processes amounts to the description of their corresponding infinitesimal generators [Dy], [GS]. Also, using the infinitesimal generator one can find the mean values of various functionals. For example, under certain assumptions the function

$$ v( t, x) = {\mathsf E} _ {x} \left [ \mathop{\rm exp} \left \{ \int\limits _ { 0 } ^ { {t } \wedge \zeta } c( x _ {s} ) ds \right \} f( x _ {t \wedge \zeta } ) \right ] ,\ \ t \geq 0,\ x \in E, $$

is a unique solution to $ v _ {t} ^ \prime = Av + cv $, $ v( 0, x) = f( x) $, which is a not-too-rapidly-increasing function of $ t $. Here $ {\mathsf E} _ {x} $ is the mathematical expectation corresponding to $ {\mathsf P} _ {x} $, while $ t \wedge \zeta = \min ( t, \zeta ) $.

The operator $ A $ is related to the characteristic operator $ \mathfrak A $[Dy]. Let $ X $ be a Markov process that is right continuous in a topological space $ E $. For a Borel function $ f $ one puts

$$ \mathfrak A f( x) = \lim\limits _ {U \downarrow x } \left [ \frac{ {\mathsf E} _ {x} f( x _ \tau ) - f( x) }{ {\mathsf E} _ {x} \tau } \right ] , $$

if the limit exists for all $ x \in E $, where $ U $ runs through a system of neighbourhoods of the point $ x $ contracting towards $ x $ and where $ \tau $ is the moment of first exit of $ X $ from $ U $( if $ {\mathsf E} _ {x} \tau = \infty $, the fraction in the limit is set equal to zero). In many cases the calculation of $ Af $ amounts to calculating $ \mathfrak A f $.

References

[F] W. Feller, "The parabolic differential equations and the associated semi-groups of transformations" Ann. of Math. , 55 (1952) pp. 468–519 MR0047886
[Dy] E.B. Dynkin, "Foundations of the theory of Markov processes" , Springer (1961) (Translated from Russian) MR0131898
[GS] I.I. Gihman, A.V. Skorohod, "The theory of stochastic processes" , 2 , Springer (1975) (Translated from Russian) MR0375463 Zbl 0305.60027

Comments

References

[BG] R.M. Blumenthal, R.K. Getoor, "Markov processes and potential theory" , Acad. Press (1968) MR0264757 Zbl 0169.49204
[Do] J.L. Doob, "Classical potential theory and its probabilistic counterpart" , Springer (1984) pp. 390 MR0731258 Zbl 0549.31001
[Dy2] E.B. Dynkin, "Markov processes" , 1 , Springer (1965) (Translated from Russian) MR0193671 Zbl 0132.37901
[F2] W. Feller, "An introduction to probability theory and its applications" , 1–2 , Wiley (1966) MR0210154 Zbl 0138.10207
[L] M. Loève, "Probability theory" , II , Springer (1978) MR0651017 MR0651018 Zbl 0385.60001
[DM] C. Dellacherie, P.A. Meyer, "Probabilities and potential" , 1–3 , North-Holland (1978–1988) pp. Chapts. XII-XVI (Translated from French) MR0939365 MR0898005 MR0727641 MR0745449 MR0566768 MR0521810 Zbl 0716.60001 Zbl 0494.60002 Zbl 0494.60001
[S] M.J. Sharpe, "General theory of Markov processes" , Acad. Press (1988) MR0958914 Zbl 0649.60079
[AM] S. Albeverio, Zh.M. Ma, "A note on quasicontinuous kernels representing quasilinear positive maps" Forum Math. , 3 (1991) pp. 389–400
How to Cite This Entry:
Transition-operator semi-group. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Transition-operator_semi-group&oldid=17099
This article was adapted from an original article by M.G. Shur (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article