Namespaces
Variants
Actions

Difference between revisions of "Topology of uniform convergence"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
The topology on the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093240/t0932401.png" /> of mappings from a set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093240/t0932402.png" /> into a [[Uniform space|uniform space]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093240/t0932403.png" /> generated by the uniform structure on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093240/t0932404.png" />, the base for the entourages of which are the collections of all pairs <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093240/t0932405.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093240/t0932406.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093240/t0932407.png" /> and where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093240/t0932408.png" /> runs through a base of entourages for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093240/t0932409.png" />. The convergence of a directed set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093240/t09324010.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093240/t09324011.png" /> in this topology is called [[Uniform convergence|uniform convergence]] of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093240/t09324012.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093240/t09324013.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093240/t09324014.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093240/t09324015.png" /> is complete, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093240/t09324016.png" /> is complete in the topology of uniform convergence. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093240/t09324017.png" /> is a topological space and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093240/t09324018.png" /> is the set of all mappings from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093240/t09324019.png" /> into <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093240/t09324020.png" /> that are continuous, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093240/t09324021.png" /> is closed in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093240/t09324022.png" /> in the topology of uniform convergence; in particular, the limit <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093240/t09324023.png" /> of a uniformly-convergent sequence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093240/t09324024.png" /> of continuous mappings on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093240/t09324025.png" /> is a continuous mapping on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093240/t09324026.png" />.
+
<!--
 +
t0932401.png
 +
$#A+1 = 29 n = 0
 +
$#C+1 = 29 : ~/encyclopedia/old_files/data/T093/T.0903240 Topology of uniform convergence
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
 +
The topology on the space  $  {\mathcal F} ( X, Y) $
 +
of mappings from a set $  X $
 +
into a [[Uniform space|uniform space]] $  Y $
 +
generated by the uniform structure on $  {\mathcal F} ( X, Y) $,  
 +
the base for the entourages of which are the collections of all pairs $  ( f, g) \in {\mathcal F} ( X, Y) \times {\mathcal F} ( X, Y) $
 +
such that $  ( f ( x), g ( x)) \in v $
 +
for all $  x \in X $
 +
and where $  v $
 +
runs through a base of entourages for $  Y $.  
 +
The convergence of a directed set $  \{ f _  \alpha  \} _ {\alpha \in A }  \subset  {\mathcal F} ( X, Y) $
 +
to $  f _ {0} \in {\mathcal F} ( X, Y) $
 +
in this topology is called [[Uniform convergence|uniform convergence]] of $  f _  \alpha  $
 +
to $  f _ {0} $
 +
on $  X $.  
 +
If $  Y $
 +
is complete, then $  {\mathcal F} ( X, Y) $
 +
is complete in the topology of uniform convergence. If $  X $
 +
is a topological space and $  {\mathcal C} ( X, Y) $
 +
is the set of all mappings from $  X $
 +
into $  Y $
 +
that are continuous, then $  {\mathcal C} ( X, Y) $
 +
is closed in $  {\mathcal F} ( X, Y) $
 +
in the topology of uniform convergence; in particular, the limit $  f _ {0} $
 +
of a uniformly-convergent sequence $  f _ {n} $
 +
of continuous mappings on $  X $
 +
is a continuous mapping on $  X $.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  N. Bourbaki,  "General topology" , ''Elements of mathematics'' , Springer  (1988)  (Translated from French)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  J.L. Kelley,  "General topology" , Springer  (1975)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  N. Bourbaki,  "General topology" , ''Elements of mathematics'' , Springer  (1988)  (Translated from French)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  J.L. Kelley,  "General topology" , Springer  (1975)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093240/t09324027.png" /> is a metric space with the uniform structure defined by the metric, then a basis for the open sets in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093240/t09324028.png" /> is formed by the sets <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093240/t09324029.png" />, and one finds the notion of uniform convergence in the form it is often encountered in e.g. analysis.
+
If $  Y $
 +
is a metric space with the uniform structure defined by the metric, then a basis for the open sets in $  {\mathcal F} ( X, Y) $
 +
is formed by the sets $  U ( f, \epsilon ) = \{ {g } : {\rho ( f( x), g( x) ) < \epsilon  \textrm{ for  all  }  x \in X } \} $,  
 +
and one finds the notion of uniform convergence in the form it is often encountered in e.g. analysis.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  R. Engelking,  "General topology" , Heldermann  (1989)</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  R. Engelking,  "General topology" , Heldermann  (1989)</TD></TR></table>

Latest revision as of 08:26, 6 June 2020


The topology on the space $ {\mathcal F} ( X, Y) $ of mappings from a set $ X $ into a uniform space $ Y $ generated by the uniform structure on $ {\mathcal F} ( X, Y) $, the base for the entourages of which are the collections of all pairs $ ( f, g) \in {\mathcal F} ( X, Y) \times {\mathcal F} ( X, Y) $ such that $ ( f ( x), g ( x)) \in v $ for all $ x \in X $ and where $ v $ runs through a base of entourages for $ Y $. The convergence of a directed set $ \{ f _ \alpha \} _ {\alpha \in A } \subset {\mathcal F} ( X, Y) $ to $ f _ {0} \in {\mathcal F} ( X, Y) $ in this topology is called uniform convergence of $ f _ \alpha $ to $ f _ {0} $ on $ X $. If $ Y $ is complete, then $ {\mathcal F} ( X, Y) $ is complete in the topology of uniform convergence. If $ X $ is a topological space and $ {\mathcal C} ( X, Y) $ is the set of all mappings from $ X $ into $ Y $ that are continuous, then $ {\mathcal C} ( X, Y) $ is closed in $ {\mathcal F} ( X, Y) $ in the topology of uniform convergence; in particular, the limit $ f _ {0} $ of a uniformly-convergent sequence $ f _ {n} $ of continuous mappings on $ X $ is a continuous mapping on $ X $.

References

[1] N. Bourbaki, "General topology" , Elements of mathematics , Springer (1988) (Translated from French)
[2] J.L. Kelley, "General topology" , Springer (1975)

Comments

If $ Y $ is a metric space with the uniform structure defined by the metric, then a basis for the open sets in $ {\mathcal F} ( X, Y) $ is formed by the sets $ U ( f, \epsilon ) = \{ {g } : {\rho ( f( x), g( x) ) < \epsilon \textrm{ for all } x \in X } \} $, and one finds the notion of uniform convergence in the form it is often encountered in e.g. analysis.

References

[a1] R. Engelking, "General topology" , Heldermann (1989)
How to Cite This Entry:
Topology of uniform convergence. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Topology_of_uniform_convergence&oldid=48994
This article was adapted from an original article by V.I. Sobolev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article