Namespaces
Variants
Actions

Difference between revisions of "Tilting theory"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (gt to >)
 
(6 intermediate revisions by 4 users not shown)
Line 1: Line 1:
 +
<!--This article has been texified automatically. Since there was no Nroff source code for this article,
 +
the semi-automatic procedure described at https://encyclopediaofmath.org/wiki/User:Maximilian_Janisch/latexlist
 +
was used.
 +
If the TeX and formula formatting is correct, please remove this message and the {{TEX|semi-auto}} category.
 +
 +
Out of 129 formulas, 129 were replaced by TEX code.-->
 +
 +
{{TEX|semi-auto}}{{TEX|done}}
 
==Artin algebras.==
 
==Artin algebras.==
A finitely-generated [[Module|module]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t1301301.png" /> over an Artin algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t1301302.png" /> (cf. also [[Artinian module|Artinian module]]) is called a tilting module if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t1301303.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t1301304.png" /> and there is a short [[Exact sequence|exact sequence]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t1301305.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t1301306.png" />. Here, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t1301307.png" /> denotes the projective dimension of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t1301308.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t1301309.png" /> is the category of finite direct sums of direct summands of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t13013010.png" /> (see [[Tilting module|Tilting module]]). Dually, a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t13013011.png" />-module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t13013012.png" /> is called a cotilting module if the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t13013013.png" />-module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t13013014.png" /> is a tilting module, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t13013015.png" /> denotes the usual duality. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t13013016.png" /> is a tilting module and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t13013017.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t13013018.png" /> is a tilting module over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t13013019.png" />. Hence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t13013020.png" /> is a cotilting <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t13013021.png" />-module.
+
A finitely-generated [[Module|module]] $T$ over an Artin algebra $\Lambda$ (cf. also [[Artinian module|Artinian module]]) is called a tilting module if $\operatorname{p.dim } _ { \Lambda } T \leq 1$ and $\operatorname { Ext } _ { \Lambda } ^ { 1 } ( T , T ) = 0$ and there is a short [[Exact sequence|exact sequence]] $0 \rightarrow \Lambda \rightarrow T _ { 0 } \rightarrow T _ { 1 } \rightarrow 0$ with $T _ { 0 } , T _ { 1 } \in \operatorname { add } T$. Here, $\operatorname{p}\cdot \operatorname{dim} _ { \Lambda } T$ denotes the projective dimension of $T$ and $\operatorname{add} T$ is the category of finite direct sums of direct summands of $T$ (see [[Tilting module|Tilting module]]). Dually, a $\Lambda$-module $T$ is called a cotilting module if the $\Lambda ^ { \text{op} }$-module $D ( T )$ is a tilting module, where $D$ denotes the usual duality. If $T$ is a tilting module and $\Gamma=\operatorname{End}_\Lambda(T)^{\operatorname{op}}$, then $T$ is a tilting module over $\Gamma ^ { \operatorname{op} }$. Hence $D ( T )$ is a cotilting $\Gamma$-module.
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t13013022.png" /> be a tilting module, and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t13013023.png" /> be the [[Category|category]] of finitely-generated <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t13013024.png" />-modules generated by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t13013025.png" />. The category <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t13013026.png" /> is a torsion class in the category <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t13013027.png" /> of finitely-generated <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t13013028.png" />-modules. This yields an associated torsion pair <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t13013029.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t13013030.png" />. Dually, there is associated with a cotilting module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t13013031.png" /> the subcategory <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t13013032.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t13013033.png" />-modules cogenerated by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t13013034.png" />. The category <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t13013035.png" /> is a torsion-free class and there is an associated torsion pair <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t13013036.png" /> where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t13013037.png" />.
+
Let $T$ be a tilting module, and let $\mathcal{T} = \operatorname {Fac} T$ be the [[Category|category]] of finitely-generated $\Lambda$-modules generated by $T$. The category $\mathcal{T}$ is a torsion class in the category $\operatorname {mod} \Lambda$ of finitely-generated $\Lambda$-modules. This yields an associated torsion pair $( \mathcal{T} , \mathcal{F} )$, where $\mathcal{F} = \{ C : \operatorname { Hom } _ { \Lambda } ( \mathcal{T} , C ) = 0 \}$. Dually, there is associated with a cotilting module $T$ the subcategory $\mathcal{Y} = \operatorname { Sub } T$ of $\Lambda$-modules cogenerated by $T$. The category $\mathcal{Y}$ is a torsion-free class and there is an associated torsion pair $\cal ( X , Y )$ where ${\cal X} = \{ C : \operatorname { Hom } _ { \Lambda } ( C , {\cal Y} ) = 0 \}$.
  
An important feature of tilting theory is the following connection between <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t13013038.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t13013039.png" /> when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t13013040.png" /> for a tilting module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t13013041.png" />: If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t13013042.png" /> denotes the torsion pair in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t13013043.png" /> associated with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t13013044.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t13013045.png" /> the torsion pair associated with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t13013046.png" />, then there are equivalences of categories:
+
An important feature of tilting theory is the following connection between $\operatorname {mod} \Lambda$ and $\mod \Gamma$ when $\Gamma = \operatorname { End } _ { \Lambda } ( T ) ^ { \text{ op} }$ for a tilting module $T$: If $( \mathcal{T} , \mathcal{F} )$ denotes the torsion pair in $\operatorname {mod} \Lambda$ associated with $T$ and $\cal ( X , Y )$ the torsion pair associated with $D ( T )$, then there are equivalences of categories:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t13013047.png" /></td> </tr></table>
+
\begin{equation*} \operatorname{Hom}_\Lambda ( T , . ) : \cal T \rightarrow Y \end{equation*}
  
 
and
 
and
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t13013048.png" /></td> </tr></table>
+
\begin{equation*} \operatorname { Ext } _ { \Lambda } ^ { 1 } ( T , . ) : \mathcal F \rightarrow \mathcal X . \end{equation*}
  
(Cf. also [[Tilting functor|Tilting functor]].) In the special case where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t13013049.png" /> is a projective generator one recovers the [[Morita equivalence|Morita equivalence]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t13013050.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t13013051.png" /> is a projective generator of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t13013052.png" />. For a general module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t13013053.png" />, the Artin algebras <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t13013054.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t13013055.png" /> may be quite different, but they share many homological properties; in particular, one uses the tilting functors <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t13013056.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t13013057.png" /> in order to transfer properties between <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t13013058.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t13013059.png" />. The transfer of information is especially useful when one already knows a lot about <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t13013060.png" /> and when the torsion pair <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t13013061.png" /> splits, that is, when each indecomposable <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t13013062.png" />-module is in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t13013063.png" /> or in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t13013064.png" />. This is the case when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t13013065.png" /> is hereditary. In this case, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t13013066.png" /> is called a tilted algebra (cf. also [[Tilted algebra|Tilted algebra]]). Tilted algebras have played an important part in representation theory, since many questions can be reduced to this class of algebras.
+
(Cf. also [[Tilting functor|Tilting functor]].) In the special case where $T$ is a projective generator one recovers the [[Morita equivalence|Morita equivalence]] $\operatorname{Hom}_\Lambda( T ,. ) : \operatorname { mod } \Lambda \rightarrow \operatorname{mod} \Gamma$, where $T$ is a projective generator of $\operatorname {mod} \Lambda$. For a general module $T$, the Artin algebras $\Lambda$ and $\Gamma$ may be quite different, but they share many homological properties; in particular, one uses the tilting functors $\operatorname{Hom}_\Lambda ( T , . )$ and $\operatorname { Ext } _ { \Lambda } ^ { 1 } ( T , . )$ in order to transfer properties between $\operatorname {mod} \Lambda$ and $\mod \Gamma$. The transfer of information is especially useful when one already knows a lot about $\operatorname {mod} \Lambda$ and when the torsion pair $\cal ( X , Y )$ splits, that is, when each indecomposable $\Gamma$-module is in $\mathcal{X}$ or in $\mathcal{Y}$. This is the case when $\Lambda$ is hereditary. In this case, $\Gamma$ is called a tilted algebra (cf. also [[Tilted algebra|Tilted algebra]]). Tilted algebras have played an important part in representation theory, since many questions can be reduced to this class of algebras.
  
Tilting theory goes back to the reflection functors introduced by I.N. Bernshtein, I.M. Gel'fand and V.A. Ponomarev [[#References|[a6]]] in the early 1970s. A module-theoretic interpretation of these functors was given by M. Auslander, M.I. Platzeck and I. Reiten [[#References|[a1]]]. Further generalizations where given by S. Brenner and M.C.R. Butler [[#References|[a5]]], where the equivalence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t13013067.png" /> was established. The above definitions where given by D. Happel and C.M. Ringel [[#References|[a12]]], who developed an extensive theory of tilted algebras. A good reference for the early work in tilting theory is [[#References|[a4]]].
+
Tilting theory goes back to the reflection functors introduced by I.N. Bernshtein, I.M. Gel'fand and V.A. Ponomarev [[#References|[a6]]] in the early 1970s. A module-theoretic interpretation of these functors was given by M. Auslander, M.I. Platzeck and I. Reiten [[#References|[a1]]]. Further generalizations where given by S. Brenner and M.C.R. Butler [[#References|[a5]]], where the equivalence $\operatorname{Hom}_\Lambda ( T , . ) : \cal T \rightarrow Y$ was established. The above definitions where given by D. Happel and C.M. Ringel [[#References|[a12]]], who developed an extensive theory of tilted algebras. A good reference for the early work in tilting theory is [[#References|[a4]]].
  
An important theoretical development of tilting theory was the connection with derived categories established by Happel [[#References|[a10]]]. The functor <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t13013068.png" /> when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t13013069.png" /> is a tilting module induces an equivalence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t13013070.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t13013071.png" /> denotes the [[Derived category|derived category]] whose objects are the bounded complexes of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t13013072.png" />-modules.
+
An important theoretical development of tilting theory was the connection with derived categories established by Happel [[#References|[a10]]]. The functor $\operatorname{Hom}_\Lambda( T ,. ) : \operatorname { mod } \Lambda \rightarrow \operatorname{mod} \Gamma$ when $T$ is a tilting module induces an equivalence $R \operatorname{Hom}_\Lambda ( T ,. ) : D ^ { b } ( \Lambda ) \rightarrow D ^ { b } ( \Gamma )$, where $D ^ { b } ( \Lambda )$ denotes the [[Derived category|derived category]] whose objects are the bounded complexes of $\Lambda$-modules.
  
The set of all tilting modules (up to isomorphism) over a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t13013073.png" />-algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t13013074.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t13013075.png" /> an [[Algebraically closed field|algebraically closed field]], has an interesting combinatorial structure: It is a countable [[Simplicial complex|simplicial complex]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t13013076.png" />. This complex has been investigated by L. Unger in [[#References|[a21]]] and [[#References|[a22]]], where it was proved that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t13013077.png" /> is a shellable simplicial complex provided it is finite, and that certain representation-theoretical invariants are reflected by its structure.
+
The set of all tilting modules (up to isomorphism) over a $k$-algebra $\Lambda$, $k$ an [[Algebraically closed field|algebraically closed field]], has an interesting combinatorial structure: It is a countable [[Simplicial complex|simplicial complex]] $\Sigma$. This complex has been investigated by L. Unger in [[#References|[a21]]] and [[#References|[a22]]], where it was proved that $\Sigma$ is a [[shellable complex]] provided it is finite, and that certain representation-theoretical invariants are reflected by its structure.
  
 
==Analogues and generalizations.==
 
==Analogues and generalizations.==
There is an analogous concept of a tilting sheaf <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t13013078.png" /> for the category <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t13013079.png" /> of coherent sheaves of a weighted projective line <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t13013080.png" /> (cf. also [[Coherent sheaf|Coherent sheaf]]) as studied in [[#References|[a9]]]. The canonical algebras introduced in [[#References|[a19]]] can be realized as endomorphism algebras of certain tilting sheaves.
+
There is an analogous concept of a tilting sheaf $T$ for the category $\operatorname{coh} \bf X$ of coherent sheaves of a weighted projective line $\mathbf{X}$ (cf. also [[Coherent sheaf|Coherent sheaf]]) as studied in [[#References|[a9]]]. The canonical algebras introduced in [[#References|[a19]]] can be realized as endomorphism algebras of certain tilting sheaves.
  
To obtain a common treatment of both the class of tilted algebras and the canonical algebras, in [[#References|[a13]]] tilting theory was generalized to hereditary categories <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t13013081.png" />, that is, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t13013082.png" /> is a connected Abelian <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t13013083.png" />-category with vanishing Yoneda functor <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t13013084.png" /> and finite-dimensional homomorphism and extension spaces. Here, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t13013085.png" /> denotes an algebraically closed field. An object <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t13013086.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t13013087.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t13013088.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t13013089.png" /> implies <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t13013090.png" />, is called a tilting object in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t13013091.png" />. The endomorphism algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t13013092.png" /> of a tilting object <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t13013093.png" /> is called a quasi-tilted algebra. Tilted algebras and canonical algebras furnish examples for quasi-tilted algebras.
+
To obtain a common treatment of both the class of tilted algebras and the canonical algebras, in [[#References|[a13]]] tilting theory was generalized to hereditary categories $\mathcal{H}$, that is, $\mathcal{H}$ is a connected Abelian $k$-category with vanishing Yoneda functor $\operatorname{Ext} ^ { 2 } ( ., . )$ and finite-dimensional homomorphism and extension spaces. Here, $k$ denotes an algebraically closed field. An object $T$ in $\mathcal{H}$ with $\operatorname { Ext } _ { \mathcal { H } } ^ { 1 } ( T , T ) = 0$ such that $\operatorname{Hom}_{\mathcal{H}}( T , X ) = 0 = \operatorname { Ext } _ { \mathcal{H}} ^ { 1 } ( T , X )$ implies $X = 0$, is called a tilting object in $\mathcal{H}$. The endomorphism algebra $\operatorname{End}_{\mathcal{H}}  T $ of a tilting object $T$ is called a quasi-tilted algebra. Tilted algebras and canonical algebras furnish examples for quasi-tilted algebras.
  
There are two types of hereditary categories <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t13013094.png" /> with tilting objects: those derived equivalent to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t13013095.png" /> for some finite-dimensional hereditary <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t13013096.png" />-algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t13013097.png" /> and those derived equivalent to some category <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t13013098.png" /> of coherent sheaves on a weighted projective line <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t13013099.png" />. Two categories are called derived equivalent if their derived categories are equivalent as triangulated categories. In 2000, Happel [[#References|[a11]]] proved that these are the only possible hereditary categories with tilting object. This proved a conjecture stated, for example, in [[#References|[a17]]].
+
There are two types of hereditary categories $\mathcal{H}$ with tilting objects: those derived equivalent to $\operatorname{mod}H$ for some finite-dimensional hereditary $k$-algebra $H$ and those derived equivalent to some category $\operatorname{coh} \bf X$ of coherent sheaves on a weighted projective line $\mathbf{X}$. Two categories are called derived equivalent if their derived categories are equivalent as triangulated categories. In 2000, Happel [[#References|[a11]]] proved that these are the only possible hereditary categories with tilting object. This proved a conjecture stated, for example, in [[#References|[a17]]].
  
 
===Generalizations and applications of tilting modules.===
 
===Generalizations and applications of tilting modules.===
A <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t130130100.png" />-module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t130130101.png" /> is called a generalized tilting module if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t130130102.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t130130103.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t130130104.png" /> and there is an exact sequence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t130130105.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t130130106.png" />. Generalized tilting modules were introduced in [[#References|[a16]]]. This concept was generalized to the notion of tilting complexes by J. Rickard [[#References|[a18]]], who established some "Morita theory for derived categories" . Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t130130107.png" /> be a ring and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t130130108.png" /> be the category of finitely-generated projective <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t130130109.png" />-modules. Denote by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t130130110.png" /> the category of bounded complexes over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t130130111.png" /> modulo homotopy. A complex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t130130112.png" /> is called a tilting complex if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t130130113.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t130130114.png" /> (here, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t130130115.png" /> denotes the shift functor) and if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t130130116.png" /> generates <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t130130117.png" /> as a triangulated category. Rickard proved that two rings <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t130130118.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t130130119.png" /> are derived equivalent (i.e. their module categories are derived equivalent) if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t130130120.png" /> is the endomorphism ring of a tilting complex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t130130121.png" />.
+
A $\Lambda$-module $T$ is called a generalized tilting module if $pd _ { \Lambda } T = n < \infty$ and $\operatorname { Ext } _ { \Delta } ^ { i } ( T , T ) = 0$ for $i > 0$ and there is an exact sequence $0 \rightarrow \Lambda \rightarrow T _ { 1 } \rightarrow \ldots \rightarrow T _ { n } \rightarrow 0$ with $T _ { i } \in \operatorname { add } T$. Generalized tilting modules were introduced in [[#References|[a16]]]. This concept was generalized to the notion of tilting complexes by J. Rickard [[#References|[a18]]], who established some "Morita theory for derived categories" . Let $R$ be a ring and let $P _ { \Lambda }$ be the category of finitely-generated projective $\Lambda$-modules. Denote by $K ^ {b} ( P _ { \Lambda } )$ the category of bounded complexes over $P _ { \Lambda }$ modulo homotopy. A complex $T \in K ^ { b } ( P _ { \Lambda } )$ is called a tilting complex if $\operatorname{Hom}_{K ^ { b } ( P _ { \Lambda } )}  ( T , T [ i ] )  = 0$ for all $i \neq 0$ (here, $[ \cdot ]$ denotes the shift functor) and if $\operatorname{add} T$ generates $K ^ {b} ( P _ { \Lambda } )$ as a triangulated category. Rickard proved that two rings $R$ and $R ^ { \prime }$ are derived equivalent (i.e. their module categories are derived equivalent) if and only if $R ^ { \prime }$ is the endomorphism ring of a tilting complex $T \in K ^ { b } ( P _ { \Lambda } )$.
  
The results mentioned above uses tilting modules/objects mainly to compare <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t130130122.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t130130123.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t130130124.png" /> for some tilting module/object. There are other approaches, which use tilting modules to describe subcategories of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t130130125.png" />. Kerner [[#References|[a15]]] and W. Crawley-Boevey and Kerner [[#References|[a7]]] used tilting modules to investigate subcategories of regular modules over wild hereditary algebras.
+
The results mentioned above uses tilting modules/objects mainly to compare $\operatorname {mod} \Lambda$ and $\mod \Gamma$, where $\Gamma = \operatorname { End } _ { \Lambda } T$ for some tilting module/object. There are other approaches, which use tilting modules to describe subcategories of $\operatorname {mod} \Lambda$. Kerner [[#References|[a15]]] and W. Crawley-Boevey and Kerner [[#References|[a7]]] used tilting modules to investigate subcategories of regular modules over wild hereditary algebras.
  
 
==Quasi-hereditary algebras.==
 
==Quasi-hereditary algebras.==
Auslander and Reiten [[#References|[a2]]] proved that there is a one-to-one correspondence between basic generalized tilting modules and certain covariantly finite subcategories of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t130130126.png" />. This correspondence was further investigated [[#References|[a14]]]. The Auslander–Reiten correspondence was applied to quasi-hereditary algebras by Ringel [[#References|[a20]]] and his results served as a basis for applications to Schur algebras by S. Donkin [[#References|[a8]]] and to [[Quantum groups|quantum groups]] by H.H. Andersen [[#References|[a3]]]. In dealing with quasi-hereditary algebras and highest-weight categories, the notion of a tilting module is now (2000) used in a related but deviating way, namely for all the objects or modules that have both a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t130130128.png" />-filtration and a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t130130130.png" />-filtration. The isomorphism classes of the indecomposables that have both a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t130130131.png" />-filtration and a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t130130132.png" />-filtration correspond bijectively to the elements of the weight poset, and their direct sum is a tilting module in the sense considered above.
+
Auslander and Reiten [[#References|[a2]]] proved that there is a one-to-one correspondence between basic generalized tilting modules and certain covariantly finite subcategories of $\operatorname {mod} \Lambda$. This correspondence was further investigated [[#References|[a14]]]. The Auslander–Reiten correspondence was applied to quasi-hereditary algebras by Ringel [[#References|[a20]]] and his results served as a basis for applications to Schur algebras by S. Donkin [[#References|[a8]]] and to [[Quantum groups|quantum groups]] by H.H. Andersen [[#References|[a3]]]. In dealing with quasi-hereditary algebras and highest-weight categories, the notion of a tilting module is now (2000) used in a related but deviating way, namely for all the objects or modules that have both a $\Delta$-filtration and a $\nabla$-filtration. The isomorphism classes of the indecomposables that have both a $\Delta$-filtration and a $\nabla$-filtration correspond bijectively to the elements of the weight poset, and their direct sum is a tilting module in the sense considered above.
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> M. Auslander,   M.I. Platzeck,   I. Reiten,   "Coxeter functors without diagrams" ''Trans. Amer. Math. Soc.'' , '''250''' (1979) pp. 1–12</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> M. Auslander,   I. Reiten,   "Applications of contravariantly finite subcategories" ''Adv. Math.'' , '''86''' : 1 (1991) pp. 111–152</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> H.H. Andersen,   "Tensor products of quantized tilting modules" ''Commun. Math. Phys.'' , '''149''' : 1 (1992) pp. 149–159</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> I. Assem,   "Tilting theory - an introduction" , ''Topics in Algebra'' , ''Banach Center Publ.'' , '''26''' , PWN (1990) pp. 127–180</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> S. Brenner,   M.C.R. Butler,   "Generalization of Bernstein–Gelfand–Ponomarev reflection functors" , ''Proc. Ottawa Conf. on Representation Theory, 1979'' , ''Lecture Notes in Mathematics'' , '''832''' , Springer (1980) pp. 103–169</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top"> I.N. Bernstein,   I.M. Gelfand,   V.A. Ponomarev,   "Coxeter functors and Gabriel's theorem" ''Russian Math. Surveys'' , '''28''' (1973) pp. 17–32 ''Uspekhi Mat. Nauk.'' , '''28''' (1973) pp. 19–33</TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top"> W. Crawley-Boevey,   O. Kerner,   "A functor between categories of regular modules for wild hereditary algebras" ''Math. Ann.'' , '''298''' (1994) pp. 481–487</TD></TR><TR><TD valign="top">[a8]</TD> <TD valign="top"> S. Donkin,   "On tilting modules for algebraic groups" ''Math. Z.'' , '''212''' : 1 (1993) pp. 39–60</TD></TR><TR><TD valign="top">[a9]</TD> <TD valign="top"> W. Geigle,   H. Lenzing,   "Perpendicular categories with applications to representations and sheaves" ''J. Algebra'' , '''144''' (1991) pp. 273–343</TD></TR><TR><TD valign="top">[a10]</TD> <TD valign="top"> D. Happel,   "Triangulated categories in the representation theory of finite dimensional algebras" ''London Math. Soc. Lecture Notes'' , '''119''' (1988)</TD></TR><TR><TD valign="top">[a11]</TD> <TD valign="top"> D. Happel,   "A characterization of hereditary categories with tilting object" ''preprint'' (2000)</TD></TR><TR><TD valign="top">[a12]</TD> <TD valign="top"> D. Happel,   C.M. Ringel,   "Tilted algebras" ''Trans. Amer. Math. Soc.'' , '''274''' (1982) pp. 399–443</TD></TR><TR><TD valign="top">[a13]</TD> <TD valign="top"> D. Happel,   R. Reiten,   S.O. Smalø,   "Tilting in abelian categories and quasitilted algebras" ''Memoirs Amer. Math. Soc.'' , '''575''' (1996)</TD></TR><TR><TD valign="top">[a14]</TD> <TD valign="top"> D. Happel,   L. Unger,   "Modules of finite projective dimension and cocovers" ''Math. Ann.'' , '''306''' (1996) pp. 445–457</TD></TR><TR><TD valign="top">[a15]</TD> <TD valign="top"> O. Kerner,   "Tilting wild algebras" ''J. London Math. Soc.'' , '''39''' : 2 (1989) pp. 29–47</TD></TR><TR><TD valign="top">[a16]</TD> <TD valign="top"> Y. Miyashita,   "Tilting modules of finite projective dimension" ''Math. Z.'' , '''193''' (1986) pp. 113–146</TD></TR><TR><TD valign="top">[a17]</TD> <TD valign="top"> I. Reiten,   "Tilting theory and quasitilted algebras" , ''Proc. Internat. Congress Math. Berlin'' , '''II''' (1998) pp. 109–120</TD></TR><TR><TD valign="top">[a18]</TD> <TD valign="top"> J. Rickard,   "Morita theory for derived categories" ''J. London Math. Soc.'' , '''39''' : 2 (1989) pp. 436–456</TD></TR><TR><TD valign="top">[a19]</TD> <TD valign="top"> C.M. Ringel,   "The canonical algebras" , ''Topics in Algebra'' , ''Banach Center Publ.'' , '''26:1''' , PWN (1990) pp. 407–432</TD></TR><TR><TD valign="top">[a20]</TD> <TD valign="top"> C.M. Ringel,   "The category of modules with good filtration over a quasi-hereditary algebra has alost split sequences" ''Math. Z.'' , '''208''' (1991) pp. 209–224</TD></TR><TR><TD valign="top">[a21]</TD> <TD valign="top"> L. Unger,   "The simplicial complex of tilting modules over quiver algebras" ''Proc. London Math. Soc.'' , '''73''' : 3 (1996) pp. 27–46</TD></TR><TR><TD valign="top">[a22]</TD> <TD valign="top"> L. Unger,   "Shellability of simplicial complexes arising in representation theory" ''Adv. Math.'' , '''144''' (1999) pp. 221–246</TD></TR></table>
+
<table>
 +
<tr><td valign="top">[a1]</td> <td valign="top"> M. Auslander, M.I. Platzeck, I. Reiten, "Coxeter functors without diagrams" ''Trans. Amer. Math. Soc.'' , '''250''' (1979) pp. 1–12 {{MR|0530043}} {{ZBL|0421.16016}} </td></tr><tr><td valign="top">[a2]</td> <td valign="top"> M. Auslander, I. Reiten, "Applications of contravariantly finite subcategories" ''Adv. Math.'' , '''86''' : 1 (1991) pp. 111–152 {{MR|1097029}} {{ZBL|0774.16006}} </td></tr><tr><td valign="top">[a3]</td> <td valign="top"> H.H. Andersen, "Tensor products of quantized tilting modules" ''Commun. Math. Phys.'' , '''149''' : 1 (1992) pp. 149–159 {{MR|1182414}} {{ZBL|0760.17004}} </td></tr><tr><td valign="top">[a4]</td> <td valign="top"> I. Assem, "Tilting theory - an introduction" , ''Topics in Algebra'' , ''Banach Center Publ.'' , '''26''' , PWN (1990) pp. 127–180 {{MR|1171230}} {{ZBL|0726.16008}} </td></tr><tr><td valign="top">[a5]</td> <td valign="top"> S. Brenner, M.C.R. Butler, "Generalization of Bernstein–Gelfand–Ponomarev reflection functors" , ''Proc. Ottawa Conf. on Representation Theory, 1979'' , ''Lecture Notes in Mathematics'' , '''832''' , Springer (1980) pp. 103–169 {{MR|607151}} {{ZBL|}} </td></tr><tr><td valign="top">[a6]</td> <td valign="top"> I.N. Bernstein, I.M. Gelfand, V.A. Ponomarev, "Coxeter functors and Gabriel's theorem" ''Russian Math. Surveys'' , '''28''' (1973) pp. 17–32 ''Uspekhi Mat. Nauk.'' , '''28''' (1973) pp. 19–33 {{MR|393065}} {{ZBL|}} </td></tr><tr><td valign="top">[a7]</td> <td valign="top"> W. Crawley-Boevey, O. Kerner, "A functor between categories of regular modules for wild hereditary algebras" ''Math. Ann.'' , '''298''' (1994) pp. 481–487 {{MR|1262771}} {{ZBL|0793.16005}} </td></tr><tr><td valign="top">[a8]</td> <td valign="top"> S. Donkin, "On tilting modules for algebraic groups" ''Math. Z.'' , '''212''' : 1 (1993) pp. 39–60 {{MR|1200163}} {{ZBL|0798.20035}} </td></tr><tr><td valign="top">[a9]</td> <td valign="top"> W. Geigle, H. Lenzing, "Perpendicular categories with applications to representations and sheaves" ''J. Algebra'' , '''144''' (1991) pp. 273–343 {{MR|1140607}} {{ZBL|0748.18007}} </td></tr><tr><td valign="top">[a10]</td> <td valign="top"> D. Happel, "Triangulated categories in the representation theory of finite dimensional algebras" ''London Math. Soc. Lecture Notes'' , '''119''' (1988) {{MR|0935124}} {{ZBL|0635.16017}} </td></tr><tr><td valign="top">[a11]</td> <td valign="top"> D. Happel, "A characterization of hereditary categories with tilting object" ''preprint'' (2000) {{MR|1827736}} {{ZBL|1015.18006}} </td></tr><tr><td valign="top">[a12]</td> <td valign="top"> D. Happel, C.M. Ringel, "Tilted algebras" ''Trans. Amer. Math. Soc.'' , '''274''' (1982) pp. 399–443 {{MR|0675063}} {{MR|0662711}} {{ZBL|0503.16024}} {{ZBL|0489.16025}} </td></tr><tr><td valign="top">[a13]</td> <td valign="top"> D. Happel, R. Reiten, S.O. Smalø, "Tilting in abelian categories and quasitilted algebras" ''Memoirs Amer. Math. Soc.'' , '''575''' (1996) {{MR|1327209}} {{ZBL|0849.16011}} </td></tr><tr><td valign="top">[a14]</td> <td valign="top"> D. Happel, L. Unger, "Modules of finite projective dimension and cocovers" ''Math. Ann.'' , '''306''' (1996) pp. 445–457 {{MR|1415073}} {{ZBL|0879.16004}} </td></tr><tr><td valign="top">[a15]</td> <td valign="top"> O. Kerner, "Tilting wild algebras" ''J. London Math. Soc.'' , '''39''' : 2 (1989) pp. 29–47 {{MR|0989917}} {{ZBL|0675.16013}} </td></tr><tr><td valign="top">[a16]</td> <td valign="top"> Y. Miyashita, "Tilting modules of finite projective dimension" ''Math. Z.'' , '''193''' (1986) pp. 113–146 {{MR|0852914}} {{ZBL|0578.16015}} </td></tr><tr><td valign="top">[a17]</td> <td valign="top"> I. Reiten, "Tilting theory and quasitilted algebras" , ''Proc. Internat. Congress Math. Berlin'' , '''II''' (1998) pp. 109–120 {{MR|1648061}} {{ZBL|0906.16002}} </td></tr><tr><td valign="top">[a18]</td> <td valign="top"> J. Rickard, "Morita theory for derived categories" ''J. London Math. Soc.'' , '''39''' : 2 (1989) pp. 436–456 {{MR|1002456}} {{ZBL|0642.16034}} </td></tr><tr><td valign="top">[a19]</td> <td valign="top"> C.M. Ringel, "The canonical algebras" , ''Topics in Algebra'' , ''Banach Center Publ.'' , '''26:1''' , PWN (1990) pp. 407–432 {{MR|1171247}} {{ZBL|0778.16003}} </td></tr><tr><td valign="top">[a20]</td> <td valign="top"> C.M. Ringel, "The category of modules with good filtration over a quasi-hereditary algebra has alost split sequences" ''Math. Z.'' , '''208''' (1991) pp. 209–224 {{MR|}} {{ZBL|}} </td></tr><tr><td valign="top">[a21]</td> <td valign="top"> L. Unger, "The simplicial complex of tilting modules over quiver algebras" ''Proc. London Math. Soc.'' , '''73''' : 3 (1996) pp. 27–46 {{MR|1387082}} {{ZBL|0861.16008}} </td></tr><tr><td valign="top">[a22]</td> <td valign="top"> L. Unger, "Shellability of simplicial complexes arising in representation theory" ''Adv. Math.'' , '''144''' (1999) pp. 221–246 {{MR|1695238}} {{ZBL|0932.16006}} </td></tr>
 +
</table>

Latest revision as of 09:47, 11 November 2023

Artin algebras.

A finitely-generated module $T$ over an Artin algebra $\Lambda$ (cf. also Artinian module) is called a tilting module if $\operatorname{p.dim } _ { \Lambda } T \leq 1$ and $\operatorname { Ext } _ { \Lambda } ^ { 1 } ( T , T ) = 0$ and there is a short exact sequence $0 \rightarrow \Lambda \rightarrow T _ { 0 } \rightarrow T _ { 1 } \rightarrow 0$ with $T _ { 0 } , T _ { 1 } \in \operatorname { add } T$. Here, $\operatorname{p}\cdot \operatorname{dim} _ { \Lambda } T$ denotes the projective dimension of $T$ and $\operatorname{add} T$ is the category of finite direct sums of direct summands of $T$ (see Tilting module). Dually, a $\Lambda$-module $T$ is called a cotilting module if the $\Lambda ^ { \text{op} }$-module $D ( T )$ is a tilting module, where $D$ denotes the usual duality. If $T$ is a tilting module and $\Gamma=\operatorname{End}_\Lambda(T)^{\operatorname{op}}$, then $T$ is a tilting module over $\Gamma ^ { \operatorname{op} }$. Hence $D ( T )$ is a cotilting $\Gamma$-module.

Let $T$ be a tilting module, and let $\mathcal{T} = \operatorname {Fac} T$ be the category of finitely-generated $\Lambda$-modules generated by $T$. The category $\mathcal{T}$ is a torsion class in the category $\operatorname {mod} \Lambda$ of finitely-generated $\Lambda$-modules. This yields an associated torsion pair $( \mathcal{T} , \mathcal{F} )$, where $\mathcal{F} = \{ C : \operatorname { Hom } _ { \Lambda } ( \mathcal{T} , C ) = 0 \}$. Dually, there is associated with a cotilting module $T$ the subcategory $\mathcal{Y} = \operatorname { Sub } T$ of $\Lambda$-modules cogenerated by $T$. The category $\mathcal{Y}$ is a torsion-free class and there is an associated torsion pair $\cal ( X , Y )$ where ${\cal X} = \{ C : \operatorname { Hom } _ { \Lambda } ( C , {\cal Y} ) = 0 \}$.

An important feature of tilting theory is the following connection between $\operatorname {mod} \Lambda$ and $\mod \Gamma$ when $\Gamma = \operatorname { End } _ { \Lambda } ( T ) ^ { \text{ op} }$ for a tilting module $T$: If $( \mathcal{T} , \mathcal{F} )$ denotes the torsion pair in $\operatorname {mod} \Lambda$ associated with $T$ and $\cal ( X , Y )$ the torsion pair associated with $D ( T )$, then there are equivalences of categories:

\begin{equation*} \operatorname{Hom}_\Lambda ( T , . ) : \cal T \rightarrow Y \end{equation*}

and

\begin{equation*} \operatorname { Ext } _ { \Lambda } ^ { 1 } ( T , . ) : \mathcal F \rightarrow \mathcal X . \end{equation*}

(Cf. also Tilting functor.) In the special case where $T$ is a projective generator one recovers the Morita equivalence $\operatorname{Hom}_\Lambda( T ,. ) : \operatorname { mod } \Lambda \rightarrow \operatorname{mod} \Gamma$, where $T$ is a projective generator of $\operatorname {mod} \Lambda$. For a general module $T$, the Artin algebras $\Lambda$ and $\Gamma$ may be quite different, but they share many homological properties; in particular, one uses the tilting functors $\operatorname{Hom}_\Lambda ( T , . )$ and $\operatorname { Ext } _ { \Lambda } ^ { 1 } ( T , . )$ in order to transfer properties between $\operatorname {mod} \Lambda$ and $\mod \Gamma$. The transfer of information is especially useful when one already knows a lot about $\operatorname {mod} \Lambda$ and when the torsion pair $\cal ( X , Y )$ splits, that is, when each indecomposable $\Gamma$-module is in $\mathcal{X}$ or in $\mathcal{Y}$. This is the case when $\Lambda$ is hereditary. In this case, $\Gamma$ is called a tilted algebra (cf. also Tilted algebra). Tilted algebras have played an important part in representation theory, since many questions can be reduced to this class of algebras.

Tilting theory goes back to the reflection functors introduced by I.N. Bernshtein, I.M. Gel'fand and V.A. Ponomarev [a6] in the early 1970s. A module-theoretic interpretation of these functors was given by M. Auslander, M.I. Platzeck and I. Reiten [a1]. Further generalizations where given by S. Brenner and M.C.R. Butler [a5], where the equivalence $\operatorname{Hom}_\Lambda ( T , . ) : \cal T \rightarrow Y$ was established. The above definitions where given by D. Happel and C.M. Ringel [a12], who developed an extensive theory of tilted algebras. A good reference for the early work in tilting theory is [a4].

An important theoretical development of tilting theory was the connection with derived categories established by Happel [a10]. The functor $\operatorname{Hom}_\Lambda( T ,. ) : \operatorname { mod } \Lambda \rightarrow \operatorname{mod} \Gamma$ when $T$ is a tilting module induces an equivalence $R \operatorname{Hom}_\Lambda ( T ,. ) : D ^ { b } ( \Lambda ) \rightarrow D ^ { b } ( \Gamma )$, where $D ^ { b } ( \Lambda )$ denotes the derived category whose objects are the bounded complexes of $\Lambda$-modules.

The set of all tilting modules (up to isomorphism) over a $k$-algebra $\Lambda$, $k$ an algebraically closed field, has an interesting combinatorial structure: It is a countable simplicial complex $\Sigma$. This complex has been investigated by L. Unger in [a21] and [a22], where it was proved that $\Sigma$ is a shellable complex provided it is finite, and that certain representation-theoretical invariants are reflected by its structure.

Analogues and generalizations.

There is an analogous concept of a tilting sheaf $T$ for the category $\operatorname{coh} \bf X$ of coherent sheaves of a weighted projective line $\mathbf{X}$ (cf. also Coherent sheaf) as studied in [a9]. The canonical algebras introduced in [a19] can be realized as endomorphism algebras of certain tilting sheaves.

To obtain a common treatment of both the class of tilted algebras and the canonical algebras, in [a13] tilting theory was generalized to hereditary categories $\mathcal{H}$, that is, $\mathcal{H}$ is a connected Abelian $k$-category with vanishing Yoneda functor $\operatorname{Ext} ^ { 2 } ( ., . )$ and finite-dimensional homomorphism and extension spaces. Here, $k$ denotes an algebraically closed field. An object $T$ in $\mathcal{H}$ with $\operatorname { Ext } _ { \mathcal { H } } ^ { 1 } ( T , T ) = 0$ such that $\operatorname{Hom}_{\mathcal{H}}( T , X ) = 0 = \operatorname { Ext } _ { \mathcal{H}} ^ { 1 } ( T , X )$ implies $X = 0$, is called a tilting object in $\mathcal{H}$. The endomorphism algebra $\operatorname{End}_{\mathcal{H}} T $ of a tilting object $T$ is called a quasi-tilted algebra. Tilted algebras and canonical algebras furnish examples for quasi-tilted algebras.

There are two types of hereditary categories $\mathcal{H}$ with tilting objects: those derived equivalent to $\operatorname{mod}H$ for some finite-dimensional hereditary $k$-algebra $H$ and those derived equivalent to some category $\operatorname{coh} \bf X$ of coherent sheaves on a weighted projective line $\mathbf{X}$. Two categories are called derived equivalent if their derived categories are equivalent as triangulated categories. In 2000, Happel [a11] proved that these are the only possible hereditary categories with tilting object. This proved a conjecture stated, for example, in [a17].

Generalizations and applications of tilting modules.

A $\Lambda$-module $T$ is called a generalized tilting module if $pd _ { \Lambda } T = n < \infty$ and $\operatorname { Ext } _ { \Delta } ^ { i } ( T , T ) = 0$ for $i > 0$ and there is an exact sequence $0 \rightarrow \Lambda \rightarrow T _ { 1 } \rightarrow \ldots \rightarrow T _ { n } \rightarrow 0$ with $T _ { i } \in \operatorname { add } T$. Generalized tilting modules were introduced in [a16]. This concept was generalized to the notion of tilting complexes by J. Rickard [a18], who established some "Morita theory for derived categories" . Let $R$ be a ring and let $P _ { \Lambda }$ be the category of finitely-generated projective $\Lambda$-modules. Denote by $K ^ {b} ( P _ { \Lambda } )$ the category of bounded complexes over $P _ { \Lambda }$ modulo homotopy. A complex $T \in K ^ { b } ( P _ { \Lambda } )$ is called a tilting complex if $\operatorname{Hom}_{K ^ { b } ( P _ { \Lambda } )} ( T , T [ i ] ) = 0$ for all $i \neq 0$ (here, $[ \cdot ]$ denotes the shift functor) and if $\operatorname{add} T$ generates $K ^ {b} ( P _ { \Lambda } )$ as a triangulated category. Rickard proved that two rings $R$ and $R ^ { \prime }$ are derived equivalent (i.e. their module categories are derived equivalent) if and only if $R ^ { \prime }$ is the endomorphism ring of a tilting complex $T \in K ^ { b } ( P _ { \Lambda } )$.

The results mentioned above uses tilting modules/objects mainly to compare $\operatorname {mod} \Lambda$ and $\mod \Gamma$, where $\Gamma = \operatorname { End } _ { \Lambda } T$ for some tilting module/object. There are other approaches, which use tilting modules to describe subcategories of $\operatorname {mod} \Lambda$. Kerner [a15] and W. Crawley-Boevey and Kerner [a7] used tilting modules to investigate subcategories of regular modules over wild hereditary algebras.

Quasi-hereditary algebras.

Auslander and Reiten [a2] proved that there is a one-to-one correspondence between basic generalized tilting modules and certain covariantly finite subcategories of $\operatorname {mod} \Lambda$. This correspondence was further investigated [a14]. The Auslander–Reiten correspondence was applied to quasi-hereditary algebras by Ringel [a20] and his results served as a basis for applications to Schur algebras by S. Donkin [a8] and to quantum groups by H.H. Andersen [a3]. In dealing with quasi-hereditary algebras and highest-weight categories, the notion of a tilting module is now (2000) used in a related but deviating way, namely for all the objects or modules that have both a $\Delta$-filtration and a $\nabla$-filtration. The isomorphism classes of the indecomposables that have both a $\Delta$-filtration and a $\nabla$-filtration correspond bijectively to the elements of the weight poset, and their direct sum is a tilting module in the sense considered above.

References

[a1] M. Auslander, M.I. Platzeck, I. Reiten, "Coxeter functors without diagrams" Trans. Amer. Math. Soc. , 250 (1979) pp. 1–12 MR0530043 Zbl 0421.16016
[a2] M. Auslander, I. Reiten, "Applications of contravariantly finite subcategories" Adv. Math. , 86 : 1 (1991) pp. 111–152 MR1097029 Zbl 0774.16006
[a3] H.H. Andersen, "Tensor products of quantized tilting modules" Commun. Math. Phys. , 149 : 1 (1992) pp. 149–159 MR1182414 Zbl 0760.17004
[a4] I. Assem, "Tilting theory - an introduction" , Topics in Algebra , Banach Center Publ. , 26 , PWN (1990) pp. 127–180 MR1171230 Zbl 0726.16008
[a5] S. Brenner, M.C.R. Butler, "Generalization of Bernstein–Gelfand–Ponomarev reflection functors" , Proc. Ottawa Conf. on Representation Theory, 1979 , Lecture Notes in Mathematics , 832 , Springer (1980) pp. 103–169 MR607151
[a6] I.N. Bernstein, I.M. Gelfand, V.A. Ponomarev, "Coxeter functors and Gabriel's theorem" Russian Math. Surveys , 28 (1973) pp. 17–32 Uspekhi Mat. Nauk. , 28 (1973) pp. 19–33 MR393065
[a7] W. Crawley-Boevey, O. Kerner, "A functor between categories of regular modules for wild hereditary algebras" Math. Ann. , 298 (1994) pp. 481–487 MR1262771 Zbl 0793.16005
[a8] S. Donkin, "On tilting modules for algebraic groups" Math. Z. , 212 : 1 (1993) pp. 39–60 MR1200163 Zbl 0798.20035
[a9] W. Geigle, H. Lenzing, "Perpendicular categories with applications to representations and sheaves" J. Algebra , 144 (1991) pp. 273–343 MR1140607 Zbl 0748.18007
[a10] D. Happel, "Triangulated categories in the representation theory of finite dimensional algebras" London Math. Soc. Lecture Notes , 119 (1988) MR0935124 Zbl 0635.16017
[a11] D. Happel, "A characterization of hereditary categories with tilting object" preprint (2000) MR1827736 Zbl 1015.18006
[a12] D. Happel, C.M. Ringel, "Tilted algebras" Trans. Amer. Math. Soc. , 274 (1982) pp. 399–443 MR0675063 MR0662711 Zbl 0503.16024 Zbl 0489.16025
[a13] D. Happel, R. Reiten, S.O. Smalø, "Tilting in abelian categories and quasitilted algebras" Memoirs Amer. Math. Soc. , 575 (1996) MR1327209 Zbl 0849.16011
[a14] D. Happel, L. Unger, "Modules of finite projective dimension and cocovers" Math. Ann. , 306 (1996) pp. 445–457 MR1415073 Zbl 0879.16004
[a15] O. Kerner, "Tilting wild algebras" J. London Math. Soc. , 39 : 2 (1989) pp. 29–47 MR0989917 Zbl 0675.16013
[a16] Y. Miyashita, "Tilting modules of finite projective dimension" Math. Z. , 193 (1986) pp. 113–146 MR0852914 Zbl 0578.16015
[a17] I. Reiten, "Tilting theory and quasitilted algebras" , Proc. Internat. Congress Math. Berlin , II (1998) pp. 109–120 MR1648061 Zbl 0906.16002
[a18] J. Rickard, "Morita theory for derived categories" J. London Math. Soc. , 39 : 2 (1989) pp. 436–456 MR1002456 Zbl 0642.16034
[a19] C.M. Ringel, "The canonical algebras" , Topics in Algebra , Banach Center Publ. , 26:1 , PWN (1990) pp. 407–432 MR1171247 Zbl 0778.16003
[a20] C.M. Ringel, "The category of modules with good filtration over a quasi-hereditary algebra has alost split sequences" Math. Z. , 208 (1991) pp. 209–224
[a21] L. Unger, "The simplicial complex of tilting modules over quiver algebras" Proc. London Math. Soc. , 73 : 3 (1996) pp. 27–46 MR1387082 Zbl 0861.16008
[a22] L. Unger, "Shellability of simplicial complexes arising in representation theory" Adv. Math. , 144 (1999) pp. 221–246 MR1695238 Zbl 0932.16006
How to Cite This Entry:
Tilting theory. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Tilting_theory&oldid=15127
This article was adapted from an original article by L. Unger (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article