From Encyclopedia of Mathematics
Revision as of 00:23, 6 February 2012 by Peter Schmitt (talk | contribs) (moved from packing (needs revision and extension))
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

A packing in which is also a covering in (cf. Covering and packing; Covering (of a set)) is called a tiling or tesselation. In other words: A tiling is a countable family of closed sets which cover without gaps or overlaps. The sets are called tiles. If all sets are congruent, they are the copies of a prototile.

In the geometry of numbers, lattice tilings are of interest; there are tilings of the form , , where is a lattice of points. For an exhaustive account of planar tilings see [a3]. Higher-dimensional results and, in particular, relations to crystallography are treated in [a2], [a1]. Classical types of tilings are Dirichlet–Voronoi tilings and Delone triangulations or -partitions, see [a1] and Voronoi lattice types.


[a1] P. Erdös, P.M. Gruber, J. Hammer, "Lattice points" , Longman (1989)
[a2] P.M. Gruber, C.G. Lekkerkerker, "Geometry of numbers" , North-Holland (1987) pp. Sect. (iv) (Updated reprint)
[a3] B. Grünbaum, G.C. Shephard, "Tilings and patterns" , Freeman (1986)
[a4] J.H. Conway, N.J.A. Sloane, "Sphere packing, lattices and groups" , Springer (1988)
How to Cite This Entry:
Tiling. Encyclopedia of Mathematics. URL: