Namespaces
Variants
Actions

Difference between revisions of "Thom class"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (tex encoded by computer)
m (fixing spaces)
 
Line 14: Line 14:
 
let  $  \gamma _ {n} \in \widetilde{E}  {}  ^ {n} ( S  ^ {n} ) $
 
let  $  \gamma _ {n} \in \widetilde{E}  {}  ^ {n} ( S  ^ {n} ) $
 
be the image of  $  1 \in \widetilde{E}  {}  ^ {0} ( S  ^ {0} ) $
 
be the image of  $  1 \in \widetilde{E}  {}  ^ {0} ( S  ^ {0} ) $
under the  $  n $-
+
under the  $  n $-fold [[Suspension|suspension]] isomorphism  $  \widetilde{E}  {}  ^ {0} ( S  ^ {0} ) \cong \widetilde{E}  {}  ^ {n} ( S  ^ {n} ) $.  
fold [[Suspension|suspension]] isomorphism  $  \widetilde{E}  {}  ^ {0} ( S  ^ {0} ) \cong \widetilde{E}  {}  ^ {n} ( S  ^ {n} ) $.  
 
 
Let  $  \xi $
 
Let  $  \xi $
be an  $  n $-
+
be an  $  n $-dimensional vector bundle over a path-connected finite cell complex  $  X $,  
dimensional vector bundle over a path-connected finite cell complex  $  X $,  
 
 
and let  $  j:  S  ^ {n} \rightarrow T ( \xi ) $
 
and let  $  j:  S  ^ {n} \rightarrow T ( \xi ) $
 
be the corresponding inclusion into the Thom space. An element  $  u \in \widetilde{E}  {}  ^ {n} ( T) $
 
be the corresponding inclusion into the Thom space. An element  $  u \in \widetilde{E}  {}  ^ {n} ( T) $
Line 26: Line 24:
 
invertible in  $  \widetilde{E}  {}  ^ {0} ( S  ^ {0} ) $.  
 
invertible in  $  \widetilde{E}  {}  ^ {0} ( S  ^ {0} ) $.  
 
A bundle need not have a Thom class. A bundle with a Thom class (in  $  E  ^ {*} $)  
 
A bundle need not have a Thom class. A bundle with a Thom class (in  $  E  ^ {*} $)  
is called  $  E $-
+
is called  $  E $-orientable, and a bundle with a fixed Thom class is  $  E $-oriented. The number of Thom classes of an  $  E $-orientable bundle over  $  X $
orientable, and a bundle with a fixed Thom class is  $  E $-
 
oriented. The number of Thom classes of an  $  E $-
 
orientable bundle over  $  X $
 
 
is equal to the number of elements of the group  $  ( \widetilde{E}  {}  ^ {0} ( S  ^ {0} ))  ^ {*} \times \widetilde{E}  {}  ^ {0} ( X) $.  
 
is equal to the number of elements of the group  $  ( \widetilde{E}  {}  ^ {0} ( S  ^ {0} ))  ^ {*} \times \widetilde{E}  {}  ^ {0} ( X) $.  
 
Multiplication by a Thom class gives a [[Thom isomorphism|Thom isomorphism]].
 
Multiplication by a Thom class gives a [[Thom isomorphism|Thom isomorphism]].
Line 36: Line 31:
 
For a (topological) manifold with or without boundary  $  ( M , \partial  M ) $,  
 
For a (topological) manifold with or without boundary  $  ( M , \partial  M ) $,  
 
a Thom class is a Thom class for its tangent (micro) bundle. Given a Thom class  $  t \in E  ^ {n} ( M \times M , M \times M \setminus  \Delta ) $,  
 
a Thom class is a Thom class for its tangent (micro) bundle. Given a Thom class  $  t \in E  ^ {n} ( M \times M , M \times M \setminus  \Delta ) $,  
there are isomorphisms  $  \varphi _ {t} :  E _ {r} ( M \setminus  B, M \setminus  A) \widetilde \rightarrow  E  ^ {n-} r ( A, B) $(
+
there are isomorphisms  $  \varphi _ {t} :  E _ {r} ( M \setminus  B, M \setminus  A) \widetilde \rightarrow  E  ^ {n- r} ( A, B) $ (Alexander duality),  $  E _ {r} ( A, B) \widetilde \rightarrow  E  ^ {n- r} ( M \setminus  A, M \setminus  B ) $,  
Alexander duality),  $  E _ {r} ( A, B) \widetilde \rightarrow  E  ^ {n-} r ( M \setminus  A, M \setminus  B ) $,  
+
$  E _ {r} ( M, \partial  M ) \widetilde \rightarrow  E  ^ {n- r} ( M) $ (Lefschetz duality) and  $  E _ {r} ( M) \widetilde \rightarrow  E  ^ {n- r} ( M, \partial  M ) $,  
$  E _ {r} ( M, \partial  M ) \widetilde \rightarrow  E  ^ {n-} r ( M) $(
+
$  E _ {r} ( M) \rightarrow E  ^ {n- r} ( M) $ (Poincaré duality), where  $  ( M , \partial  M ) $
Lefschetz duality) and  $  E _ {r} ( M) \widetilde \rightarrow  E  ^ {n-} r ( M, \partial  M ) $,  
 
$  E _ {r} ( M) \rightarrow E  ^ {n-} r ( M) $(
 
Poincaré duality), where  $  ( M , \partial  M ) $
 
 
is a compact triangulable manifold and  $  B \subset  A \subset  M \setminus  \partial  M $
 
is a compact triangulable manifold and  $  B \subset  A \subset  M \setminus  \partial  M $
 
are compact subpolyhedra, cf. [[#References|[a1]]], Chapt. 14, for more details.
 
are compact subpolyhedra, cf. [[#References|[a1]]], Chapt. 14, for more details.
Line 47: Line 39:
 
An element  $  z \in E _ {n} ( M, \partial  M) $
 
An element  $  z \in E _ {n} ( M, \partial  M) $
 
is called a fundamental class if for every  $  x \in M \setminus  \partial  M $
 
is called a fundamental class if for every  $  x \in M \setminus  \partial  M $
one has that  $  j _ {*} ( z) \in E _ {n} ( M, M \setminus  \{ x \} ) $(
+
one has that  $  j _ {*} ( z) \in E _ {n} ( M, M \setminus  \{ x \} ) $ ($  \cong E _ {n} ( U, U \setminus  \{ x \} ) \simeq E _ {n} ( \mathbf R  ^ {n} , \mathbf R  ^ {n} \setminus  \{ 0 \} ) $)  
$  \cong E _ {n} ( U, U \setminus  \{ x \} ) \simeq E _ {n} ( \mathbf R  ^ {n} , \mathbf R  ^ {n} \setminus  \{ 0 \} ) $)  
 
 
is a generator of  $  E _ {*} ( M, M \setminus  \{ x \} ) $
 
is a generator of  $  E _ {*} ( M, M \setminus  \{ x \} ) $
 
as a module over  $  E _ {*} ( pt) $.  
 
as a module over  $  E _ {*} ( pt) $.  
Line 54: Line 45:
 
is the inclusion  $  ( M, \partial  M ) \rightarrow ( M, M \setminus  \{ x \} ) $.)  
 
is the inclusion  $  ( M, \partial  M ) \rightarrow ( M, M \setminus  \{ x \} ) $.)  
 
For the case of ordinary homology, cf. [[Fundamental class|Fundamental class]]. The relation between a fundamental class and a Thom class is given by the result that if  $  M $
 
For the case of ordinary homology, cf. [[Fundamental class|Fundamental class]]. The relation between a fundamental class and a Thom class is given by the result that if  $  M $
is a compact triangulable  $  n $-
+
is a compact triangulable  $  n $-manifold with Thom class  $  t $,  
manifold with Thom class  $  t $,  
 
 
then there is a unique fundamental class  $  z \in E _ {n} ( M, \partial  M ) $
 
then there is a unique fundamental class  $  z \in E _ {n} ( M, \partial  M ) $
 
such that  $  \varphi _ {t} :  E _ {n} ( M, \partial  M ) \widetilde \rightarrow  E  ^ {0} ( M \setminus  \partial  M ) $
 
such that  $  \varphi _ {t} :  E _ {n} ( M, \partial  M ) \widetilde \rightarrow  E  ^ {0} ( M \setminus  \partial  M ) $
 
takes  $  2 $
 
takes  $  2 $
 
to  $  1 $,  
 
to  $  1 $,  
cf. [[#References|[a1]]], Prop. 14.17. Using this the Lefschetz and Poincaré duality isomorphisms defined by the Thom class  $  t $(
+
cf. [[#References|[a1]]], Prop. 14.17. Using this the Lefschetz and Poincaré duality isomorphisms defined by the Thom class  $  t $ (which essentially are defined by a slant product with  $  t $)  
which essentially are defined by a slant product with  $  t $)  
 
 
are given by a cap product with  $  z $.
 
are given by a cap product with  $  z $.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  R.M. Switzer,  "Algebraic topology - homotopy and homology" , Springer  (1975)  pp. Chapt. 2</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  R.M. Switzer,  "Algebraic topology - homotopy and homology" , Springer  (1975)  pp. Chapt. 2</TD></TR></table>

Latest revision as of 10:13, 30 January 2022


An element in the (generalized) cohomology group of a Thom space, generating it as a module over the cohomology ring of the base space. For a multiplicative generalized cohomology theory (cf. Generalized cohomology theories) $ E ^ {*} $, let $ \gamma _ {n} \in \widetilde{E} {} ^ {n} ( S ^ {n} ) $ be the image of $ 1 \in \widetilde{E} {} ^ {0} ( S ^ {0} ) $ under the $ n $-fold suspension isomorphism $ \widetilde{E} {} ^ {0} ( S ^ {0} ) \cong \widetilde{E} {} ^ {n} ( S ^ {n} ) $. Let $ \xi $ be an $ n $-dimensional vector bundle over a path-connected finite cell complex $ X $, and let $ j: S ^ {n} \rightarrow T ( \xi ) $ be the corresponding inclusion into the Thom space. An element $ u \in \widetilde{E} {} ^ {n} ( T) $ is called a Thom class (or orientation) of the bundle $ \xi $ if $ j ^ {*} u = \epsilon \gamma _ {n} $, with $ \epsilon $ invertible in $ \widetilde{E} {} ^ {0} ( S ^ {0} ) $. A bundle need not have a Thom class. A bundle with a Thom class (in $ E ^ {*} $) is called $ E $-orientable, and a bundle with a fixed Thom class is $ E $-oriented. The number of Thom classes of an $ E $-orientable bundle over $ X $ is equal to the number of elements of the group $ ( \widetilde{E} {} ^ {0} ( S ^ {0} )) ^ {*} \times \widetilde{E} {} ^ {0} ( X) $. Multiplication by a Thom class gives a Thom isomorphism.

Comments

For a (topological) manifold with or without boundary $ ( M , \partial M ) $, a Thom class is a Thom class for its tangent (micro) bundle. Given a Thom class $ t \in E ^ {n} ( M \times M , M \times M \setminus \Delta ) $, there are isomorphisms $ \varphi _ {t} : E _ {r} ( M \setminus B, M \setminus A) \widetilde \rightarrow E ^ {n- r} ( A, B) $ (Alexander duality), $ E _ {r} ( A, B) \widetilde \rightarrow E ^ {n- r} ( M \setminus A, M \setminus B ) $, $ E _ {r} ( M, \partial M ) \widetilde \rightarrow E ^ {n- r} ( M) $ (Lefschetz duality) and $ E _ {r} ( M) \widetilde \rightarrow E ^ {n- r} ( M, \partial M ) $, $ E _ {r} ( M) \rightarrow E ^ {n- r} ( M) $ (Poincaré duality), where $ ( M , \partial M ) $ is a compact triangulable manifold and $ B \subset A \subset M \setminus \partial M $ are compact subpolyhedra, cf. [a1], Chapt. 14, for more details.

An element $ z \in E _ {n} ( M, \partial M) $ is called a fundamental class if for every $ x \in M \setminus \partial M $ one has that $ j _ {*} ( z) \in E _ {n} ( M, M \setminus \{ x \} ) $ ($ \cong E _ {n} ( U, U \setminus \{ x \} ) \simeq E _ {n} ( \mathbf R ^ {n} , \mathbf R ^ {n} \setminus \{ 0 \} ) $) is a generator of $ E _ {*} ( M, M \setminus \{ x \} ) $ as a module over $ E _ {*} ( pt) $. (Here $ j $ is the inclusion $ ( M, \partial M ) \rightarrow ( M, M \setminus \{ x \} ) $.) For the case of ordinary homology, cf. Fundamental class. The relation between a fundamental class and a Thom class is given by the result that if $ M $ is a compact triangulable $ n $-manifold with Thom class $ t $, then there is a unique fundamental class $ z \in E _ {n} ( M, \partial M ) $ such that $ \varphi _ {t} : E _ {n} ( M, \partial M ) \widetilde \rightarrow E ^ {0} ( M \setminus \partial M ) $ takes $ 2 $ to $ 1 $, cf. [a1], Prop. 14.17. Using this the Lefschetz and Poincaré duality isomorphisms defined by the Thom class $ t $ (which essentially are defined by a slant product with $ t $) are given by a cap product with $ z $.

References

[a1] R.M. Switzer, "Algebraic topology - homotopy and homology" , Springer (1975) pp. Chapt. 2
How to Cite This Entry:
Thom class. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Thom_class&oldid=48969
This article was adapted from an original article by Yu.B. Rudyak (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article