Thin set

From Encyclopedia of Mathematics
Revision as of 08:25, 6 June 2020 by Ulf Rehmann (talk | contribs) (tex encoded by computer)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

A subset $ A $ of a domain $ D \subset \mathbf C ^ {k} $ such that, for each point $ z \in D $, there exists an open polydisc $ \Delta ( z, r) \subset D $ and a function $ f $ which is holomorphic, not identically equal to zero, but which vanishes on $ A \cap \Delta ( z, r) $.


Usually, being thin means being a subset of an analytic set. Cf. also Thinness of a set.


[a1] R.C. Gunning, H. Rossi, "Analytic functions of several complex variables" , Prentice-Hall (1965) pp. Chapt. 1, Sect. C
[a2] R.M. Range, "Holomorphic functions and integral representation in several complex variables" , Springer (1986) pp. Chapt. 1, Sect. 3
How to Cite This Entry:
Thin set. Encyclopedia of Mathematics. URL:
This article was adapted from an original article by M.I. Voitsekhovskii (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article