Namespaces
Variants
Actions

Difference between revisions of "Theodorsen integral equation"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (AUTOMATIC EDIT (latexlist): Replaced 45 formulas out of 46 by TEX code with an average confidence of 2.0 and a minimal confidence of 2.0.)
Line 1: Line 1:
Theodorsen's integral equation [[#References|[a7]]] is a well-known tool for computing numerically the [[Conformal mapping|conformal mapping]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130070/t1300701.png" /> of the unit disc <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130070/t1300702.png" /> onto a star-like region <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130070/t1300703.png" /> given by the polar coordinates <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130070/t1300704.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130070/t1300705.png" /> of its boundary <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130070/t1300706.png" />. The mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130070/t1300707.png" /> is assumed to be normalized by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130070/t1300708.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130070/t1300709.png" />. It is uniquely determined by its boundary correspondence function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130070/t13007010.png" />, which is implicitly defined by
+
<!--This article has been texified automatically. Since there was no Nroff source code for this article,
 +
the semi-automatic procedure described at https://encyclopediaofmath.org/wiki/User:Maximilian_Janisch/latexlist
 +
was used.
 +
If the TeX and formula formatting is correct, please remove this message and the {{TEX|semi-auto}} category.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130070/t13007011.png" /></td> </tr></table>
+
Out of 46 formulas, 45 were replaced by TEX code.-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130070/t13007012.png" /></td> </tr></table>
+
{{TEX|semi-auto}}{{TEX|partial}}
 +
Theodorsen's integral equation [[#References|[a7]]] is a well-known tool for computing numerically the [[Conformal mapping|conformal mapping]] $g$ of the unit disc $D$ onto a star-like region $\Delta$ given by the polar coordinates $\tau$, $\rho ( \tau )$ of its boundary $\Gamma$. The mapping $g$ is assumed to be normalized by $g ( 0 ) = 0$, $g ^ { \prime } ( 0 ) &gt; 0$. It is uniquely determined by its boundary correspondence function $\theta$, which is implicitly defined by
  
Theodorsen's equation follows from the fact that the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130070/t13007013.png" /> is analytic in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130070/t13007014.png" /> and can be extended to a [[Homeomorphism|homeomorphism]] of the closure <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130070/t13007015.png" /> onto the closure <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130070/t13007016.png" />. It simply states that the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130070/t13007017.png" />-periodic function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130070/t13007018.png" />: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130070/t13007019.png" /> is the conjugate periodic function of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130070/t13007020.png" />: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130070/t13007021.png" />, that is, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130070/t13007022.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130070/t13007023.png" /> is the conjugation operator defined on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130070/t13007024.png" /> by the principal value integral
+
\begin{equation*} g ( e ^ { i t } ) = \rho ( \theta ( t ) ) e ^ { i \theta ( t ) } ( \forall t \in \mathbf{R} ), \end{equation*}
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130070/t13007025.png" /></td> </tr></table>
+
\begin{equation*} \int _ { 0 } ^ { 2 \pi } \theta ( t ) d t = 2 \pi ^ { 2 }. \end{equation*}
  
When restricted to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130070/t13007026.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130070/t13007027.png" /> is a skew-symmetric endomorphism of norm <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130070/t13007028.png" /> with a very simple diagonal representation in Fourier space: when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130070/t13007029.png" /> has the real Fourier coefficients <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130070/t13007030.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130070/t13007031.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130070/t13007032.png" /> has the coefficients <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130070/t13007033.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130070/t13007034.png" />.
+
Theodorsen's equation follows from the fact that the function $h ( w ) : = \operatorname { log } ( g ( w ) / w )$ is analytic in $D$ and can be extended to a [[Homeomorphism|homeomorphism]] of the closure $\overline{ D }$ onto the closure $\overline{\Delta}$. It simply states that the $2 \pi$-periodic function $y$: $t \mapsto \theta - t$ is the conjugate periodic function of $x$: $t \mapsto \operatorname { log } \rho ( \theta ( t ) )$, that is, $y = K x$, where $K$ is the conjugation operator defined on $L [ 0,2 \pi ]$ by the principal value integral
 +
 
 +
\begin{equation*} ( K x ) ( t ) : = \frac { 1 } { 2 \pi } \text{P} \cdot \text{V} \cdot \int _ { 0 } ^ { 2 \pi } x ( s ) \operatorname { cot } \frac { t - s } { 2 } d s \ (a.e.) . \end{equation*}
 +
 
 +
When restricted to $L _ { 2 } [ 0,2 \pi ]$, $K$ is a skew-symmetric endomorphism of norm $1$ with a very simple diagonal representation in Fourier space: when $x$ has the real Fourier coefficients $a_0 , a_1 , \dots$, $b _ { 1 } , b _ { 2 } , \dots$, then $y$ has the coefficients $0 , - b _ { 1 } , - b _ { 2 } , \dots$, $a _ { 1 } , a _ { 2 } , \dots$.
  
 
Hence, while Theodorsen's integral equation is normally written as
 
Hence, while Theodorsen's integral equation is normally written as
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130070/t13007035.png" /></td> </tr></table>
+
\begin{equation*} \theta ( t ) - t = \frac { 1 } { 2 \pi } \operatorname {P} \cdot \operatorname {V}\cdot \int _ { 0 } ^ { 2 \pi } \operatorname { log } \rho ( \theta ( s ) ) \operatorname { cot } \frac { t - s } { 2 } d s, \end{equation*}
  
for practical purposes the conjugation is executed by transformation to Fourier space: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130070/t13007036.png" /> is approximated by a [[Trigonometric polynomial|trigonometric polynomial]] of degree <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130070/t13007037.png" />, whose Fourier coefficients are quickly found by the fast Fourier transform, which then can also be applied to determine values at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130070/t13007038.png" /> equi-spaced points of the trigonometric polynomial that approximates <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130070/t13007039.png" /> (cf. also [[Fourier series|Fourier series]]). Before the fast Fourier transform became the standard tool for this discrete conjugation process, the transition from the values of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130070/t13007040.png" /> to those of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130070/t13007041.png" /> was based on multiplication by a matrix, called the Wittich matrix in [[#References|[a1]]]. The fast Fourier transform meant a cost reduction from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130070/t13007042.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130070/t13007043.png" /> operations per iteration.
+
for practical purposes the conjugation is executed by transformation to Fourier space: $x$ is approximated by a [[Trigonometric polynomial|trigonometric polynomial]] of degree $N$, whose Fourier coefficients are quickly found by the fast Fourier transform, which then can also be applied to determine values at $2 N$ equi-spaced points of the trigonometric polynomial that approximates $y = K x$ (cf. also [[Fourier series|Fourier series]]). Before the fast Fourier transform became the standard tool for this discrete conjugation process, the transition from the values of $x$ to those of $y$ was based on multiplication by a matrix, called the Wittich matrix in [[#References|[a1]]]. The fast Fourier transform meant a cost reduction from $O ( N ^ { 2 } )$ to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130070/t13007043.png"/> operations per iteration.
  
Until the end of the 1970s the recommendation was to solve a so-obtained discrete version of Theodorsen's equation by fixed-point (Picard) iteration, an approach that is limited to Jordan regions with piecewise differentiable boundary satisfying <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130070/t13007044.png" />, and is very slow when the bound <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130070/t13007045.png" /> is nearly attained. Other regions, like those from airfoil design, which was the standard application targeted by T. Theodorsen, could be handled by using first a suitable preliminary conformal mapping, which turned the exterior of the wing cross-section into the exterior of a Jordan curve that is close to a circle; see [[#References|[a6]]], Chapt. 10. Moreover, for this application, the equation has to be modified slightly to map the exterior of the disc onto the exterior of a Jordan curve.
+
Until the end of the 1970s the recommendation was to solve a so-obtained discrete version of Theodorsen's equation by fixed-point (Picard) iteration, an approach that is limited to Jordan regions with piecewise differentiable boundary satisfying $| \rho ^ { \prime } / \rho | &lt; 1$, and is very slow when the bound $1$ is nearly attained. Other regions, like those from airfoil design, which was the standard application targeted by T. Theodorsen, could be handled by using first a suitable preliminary conformal mapping, which turned the exterior of the wing cross-section into the exterior of a Jordan curve that is close to a circle; see [[#References|[a6]]], Chapt. 10. Moreover, for this application, the equation has to be modified slightly to map the exterior of the disc onto the exterior of a Jordan curve.
  
M. Gutknecht [[#References|[a4]]], [[#References|[a2]]] extended the applicability of Theodorsen's equation by applying more refined iterative methods and discretizations, and O. Hübner [[#References|[a5]]] improved the convergence order from linear to quadratic by adapting R. Wegmann's treatment of a similar equation obtained by choosing <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130070/t13007046.png" /> instead. Wegmann's method [[#References|[a9]]], [[#References|[a10]]] applies the [[Newton method|Newton method]] and solves the linear equation for the corrections by interpreting it as a [[Riemann–Hilbert problem|Riemann–Hilbert problem]] that can be solved with four fast Fourier transforms.
+
M. Gutknecht [[#References|[a4]]], [[#References|[a2]]] extended the applicability of Theodorsen's equation by applying more refined iterative methods and discretizations, and O. Hübner [[#References|[a5]]] improved the convergence order from linear to quadratic by adapting R. Wegmann's treatment of a similar equation obtained by choosing $h ( w ) : = g ( w ) / w$ instead. Wegmann's method [[#References|[a9]]], [[#References|[a10]]] applies the [[Newton method|Newton method]] and solves the linear equation for the corrections by interpreting it as a [[Riemann–Hilbert problem|Riemann–Hilbert problem]] that can be solved with four fast Fourier transforms.
  
 
A common framework for conformal mapping methods based on function conjugation is given in [[#References|[a3]]]; Theodorsen's restriction to regions given in polar coordinates can be lifted. Both Theodorsen's [[#References|[a8]]] and Wegmann's [[#References|[a11]]] equations and methods can be extended to the doubly connected case.
 
A common framework for conformal mapping methods based on function conjugation is given in [[#References|[a3]]]; Theodorsen's restriction to regions given in polar coordinates can be lifted. Both Theodorsen's [[#References|[a8]]] and Wegmann's [[#References|[a11]]] equations and methods can be extended to the doubly connected case.
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  D. Gaier,  "Konstruktive Methoden der konformen Abbildung" , Springer  (1964)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  M.H. Gutknecht,  "Numerical experiments on solving Theodorsen's integral equation for conformal maps with the fast Fourier transform and various nonlinear iterative methods"  ''SIAM J. Sci. Statist. Comput.'' , '''4'''  (1983)  pp. 1–30</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  M.H. Gutknecht,  "Numerical conformal mapping methods based on function conjugation"  ''J. Comput. Appl. Math.'' , '''14'''  (1986)  pp. 31–77</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  M.H. Gutknecht,  "Solving Theodorsen's integral equation for conformal maps with the fast Fourier transform and various nonlinear iterative methods"  ''Numer. Math.'' , '''36'''  (1981)  pp. 405–429</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top">  O. Hübner,  "The Newton method for solving the Theodorsen equation"  ''J. Comput. Appl. Math.'' , '''14'''  (1986)  pp. 19–30</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top">  P.K. Kythe,  "Computational conformal mapping" , Birkhäuser  (1998)</TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top">  T. Theodorsen,  "Theory of wing sections of arbitrary shape"  ''Rept. NACA'' , '''411'''  (1931)</TD></TR><TR><TD valign="top">[a8]</TD> <TD valign="top">  T. Theodorsen,  I.E. Garrick,  "General potential theory of arbitrary wing sections"  ''Rept. NACA'' , '''452'''  (1933)</TD></TR><TR><TD valign="top">[a9]</TD> <TD valign="top">  R. Wegmann,  "Ein Iterationsverfahren zur konformen Abbildung"  ''Numer. Math.'' , '''30'''  (1978)  pp. 453–466</TD></TR><TR><TD valign="top">[a10]</TD> <TD valign="top">  R. Wegmann,  "An iterative method for conformal mapping"  ''J. Comput. Appl. Math.'' , '''14'''  (1986)  pp. 7–18  (Translated from German)  (English translation of [9])</TD></TR><TR><TD valign="top">[a11]</TD> <TD valign="top">  R. Wegmann,  "An iterative method for the conformal mapping of doubly connected regions"  ''J. Comput. Appl. Math.'' , '''14'''  (1986)  pp. 79–98</TD></TR></table>
+
<table><tr><td valign="top">[a1]</td> <td valign="top">  D. Gaier,  "Konstruktive Methoden der konformen Abbildung" , Springer  (1964)</td></tr><tr><td valign="top">[a2]</td> <td valign="top">  M.H. Gutknecht,  "Numerical experiments on solving Theodorsen's integral equation for conformal maps with the fast Fourier transform and various nonlinear iterative methods"  ''SIAM J. Sci. Statist. Comput.'' , '''4'''  (1983)  pp. 1–30</td></tr><tr><td valign="top">[a3]</td> <td valign="top">  M.H. Gutknecht,  "Numerical conformal mapping methods based on function conjugation"  ''J. Comput. Appl. Math.'' , '''14'''  (1986)  pp. 31–77</td></tr><tr><td valign="top">[a4]</td> <td valign="top">  M.H. Gutknecht,  "Solving Theodorsen's integral equation for conformal maps with the fast Fourier transform and various nonlinear iterative methods"  ''Numer. Math.'' , '''36'''  (1981)  pp. 405–429</td></tr><tr><td valign="top">[a5]</td> <td valign="top">  O. Hübner,  "The Newton method for solving the Theodorsen equation"  ''J. Comput. Appl. Math.'' , '''14'''  (1986)  pp. 19–30</td></tr><tr><td valign="top">[a6]</td> <td valign="top">  P.K. Kythe,  "Computational conformal mapping" , Birkhäuser  (1998)</td></tr><tr><td valign="top">[a7]</td> <td valign="top">  T. Theodorsen,  "Theory of wing sections of arbitrary shape"  ''Rept. NACA'' , '''411'''  (1931)</td></tr><tr><td valign="top">[a8]</td> <td valign="top">  T. Theodorsen,  I.E. Garrick,  "General potential theory of arbitrary wing sections"  ''Rept. NACA'' , '''452'''  (1933)</td></tr><tr><td valign="top">[a9]</td> <td valign="top">  R. Wegmann,  "Ein Iterationsverfahren zur konformen Abbildung"  ''Numer. Math.'' , '''30'''  (1978)  pp. 453–466</td></tr><tr><td valign="top">[a10]</td> <td valign="top">  R. Wegmann,  "An iterative method for conformal mapping"  ''J. Comput. Appl. Math.'' , '''14'''  (1986)  pp. 7–18  (Translated from German)  (English translation of [9])</td></tr><tr><td valign="top">[a11]</td> <td valign="top">  R. Wegmann,  "An iterative method for the conformal mapping of doubly connected regions"  ''J. Comput. Appl. Math.'' , '''14'''  (1986)  pp. 79–98</td></tr></table>

Revision as of 16:59, 1 July 2020

Theodorsen's integral equation [a7] is a well-known tool for computing numerically the conformal mapping $g$ of the unit disc $D$ onto a star-like region $\Delta$ given by the polar coordinates $\tau$, $\rho ( \tau )$ of its boundary $\Gamma$. The mapping $g$ is assumed to be normalized by $g ( 0 ) = 0$, $g ^ { \prime } ( 0 ) > 0$. It is uniquely determined by its boundary correspondence function $\theta$, which is implicitly defined by

\begin{equation*} g ( e ^ { i t } ) = \rho ( \theta ( t ) ) e ^ { i \theta ( t ) } ( \forall t \in \mathbf{R} ), \end{equation*}

\begin{equation*} \int _ { 0 } ^ { 2 \pi } \theta ( t ) d t = 2 \pi ^ { 2 }. \end{equation*}

Theodorsen's equation follows from the fact that the function $h ( w ) : = \operatorname { log } ( g ( w ) / w )$ is analytic in $D$ and can be extended to a homeomorphism of the closure $\overline{ D }$ onto the closure $\overline{\Delta}$. It simply states that the $2 \pi$-periodic function $y$: $t \mapsto \theta - t$ is the conjugate periodic function of $x$: $t \mapsto \operatorname { log } \rho ( \theta ( t ) )$, that is, $y = K x$, where $K$ is the conjugation operator defined on $L [ 0,2 \pi ]$ by the principal value integral

\begin{equation*} ( K x ) ( t ) : = \frac { 1 } { 2 \pi } \text{P} \cdot \text{V} \cdot \int _ { 0 } ^ { 2 \pi } x ( s ) \operatorname { cot } \frac { t - s } { 2 } d s \ (a.e.) . \end{equation*}

When restricted to $L _ { 2 } [ 0,2 \pi ]$, $K$ is a skew-symmetric endomorphism of norm $1$ with a very simple diagonal representation in Fourier space: when $x$ has the real Fourier coefficients $a_0 , a_1 , \dots$, $b _ { 1 } , b _ { 2 } , \dots$, then $y$ has the coefficients $0 , - b _ { 1 } , - b _ { 2 } , \dots$, $a _ { 1 } , a _ { 2 } , \dots$.

Hence, while Theodorsen's integral equation is normally written as

\begin{equation*} \theta ( t ) - t = \frac { 1 } { 2 \pi } \operatorname {P} \cdot \operatorname {V}\cdot \int _ { 0 } ^ { 2 \pi } \operatorname { log } \rho ( \theta ( s ) ) \operatorname { cot } \frac { t - s } { 2 } d s, \end{equation*}

for practical purposes the conjugation is executed by transformation to Fourier space: $x$ is approximated by a trigonometric polynomial of degree $N$, whose Fourier coefficients are quickly found by the fast Fourier transform, which then can also be applied to determine values at $2 N$ equi-spaced points of the trigonometric polynomial that approximates $y = K x$ (cf. also Fourier series). Before the fast Fourier transform became the standard tool for this discrete conjugation process, the transition from the values of $x$ to those of $y$ was based on multiplication by a matrix, called the Wittich matrix in [a1]. The fast Fourier transform meant a cost reduction from $O ( N ^ { 2 } )$ to operations per iteration.

Until the end of the 1970s the recommendation was to solve a so-obtained discrete version of Theodorsen's equation by fixed-point (Picard) iteration, an approach that is limited to Jordan regions with piecewise differentiable boundary satisfying $| \rho ^ { \prime } / \rho | < 1$, and is very slow when the bound $1$ is nearly attained. Other regions, like those from airfoil design, which was the standard application targeted by T. Theodorsen, could be handled by using first a suitable preliminary conformal mapping, which turned the exterior of the wing cross-section into the exterior of a Jordan curve that is close to a circle; see [a6], Chapt. 10. Moreover, for this application, the equation has to be modified slightly to map the exterior of the disc onto the exterior of a Jordan curve.

M. Gutknecht [a4], [a2] extended the applicability of Theodorsen's equation by applying more refined iterative methods and discretizations, and O. Hübner [a5] improved the convergence order from linear to quadratic by adapting R. Wegmann's treatment of a similar equation obtained by choosing $h ( w ) : = g ( w ) / w$ instead. Wegmann's method [a9], [a10] applies the Newton method and solves the linear equation for the corrections by interpreting it as a Riemann–Hilbert problem that can be solved with four fast Fourier transforms.

A common framework for conformal mapping methods based on function conjugation is given in [a3]; Theodorsen's restriction to regions given in polar coordinates can be lifted. Both Theodorsen's [a8] and Wegmann's [a11] equations and methods can be extended to the doubly connected case.

References

[a1] D. Gaier, "Konstruktive Methoden der konformen Abbildung" , Springer (1964)
[a2] M.H. Gutknecht, "Numerical experiments on solving Theodorsen's integral equation for conformal maps with the fast Fourier transform and various nonlinear iterative methods" SIAM J. Sci. Statist. Comput. , 4 (1983) pp. 1–30
[a3] M.H. Gutknecht, "Numerical conformal mapping methods based on function conjugation" J. Comput. Appl. Math. , 14 (1986) pp. 31–77
[a4] M.H. Gutknecht, "Solving Theodorsen's integral equation for conformal maps with the fast Fourier transform and various nonlinear iterative methods" Numer. Math. , 36 (1981) pp. 405–429
[a5] O. Hübner, "The Newton method for solving the Theodorsen equation" J. Comput. Appl. Math. , 14 (1986) pp. 19–30
[a6] P.K. Kythe, "Computational conformal mapping" , Birkhäuser (1998)
[a7] T. Theodorsen, "Theory of wing sections of arbitrary shape" Rept. NACA , 411 (1931)
[a8] T. Theodorsen, I.E. Garrick, "General potential theory of arbitrary wing sections" Rept. NACA , 452 (1933)
[a9] R. Wegmann, "Ein Iterationsverfahren zur konformen Abbildung" Numer. Math. , 30 (1978) pp. 453–466
[a10] R. Wegmann, "An iterative method for conformal mapping" J. Comput. Appl. Math. , 14 (1986) pp. 7–18 (Translated from German) (English translation of [9])
[a11] R. Wegmann, "An iterative method for the conformal mapping of doubly connected regions" J. Comput. Appl. Math. , 14 (1986) pp. 79–98
How to Cite This Entry:
Theodorsen integral equation. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Theodorsen_integral_equation&oldid=50294
This article was adapted from an original article by Martin H. Gutknecht (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article