Namespaces
Variants
Actions

Difference between revisions of "Taylor joint spectrum"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (Automatically changed introduction)
 
(4 intermediate revisions by 3 users not shown)
Line 1: Line 1:
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t1300501.png" /> be the [[Exterior algebra|exterior algebra]] on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t1300502.png" /> generators <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t1300503.png" />, with identity <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t1300504.png" />. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t1300505.png" /> is the algebra of forms in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t1300506.png" /> with complex coefficients, subject to the collapsing property <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t1300507.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t1300508.png" />). Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t1300509.png" /> denote the creation operator, given by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005010.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005011.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005012.png" />). If one declares <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005013.png" /> to be an orthonormal basis, the exterior algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005014.png" /> becomes a [[Hilbert space|Hilbert space]], admitting an orthogonal decomposition <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005015.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005016.png" />. Thus, each <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005017.png" /> admits a unique orthogonal decomposition <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005018.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005019.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005020.png" /> have no <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005021.png" /> contribution. It then readily follows that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005022.png" />. Indeed, each <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005023.png" /> is a partial isometry, satisfying <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005024.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005025.png" />).
+
<!--This article has been texified automatically. Since there was no Nroff source code for this article,  
 +
the semi-automatic procedure described at https://encyclopediaofmath.org/wiki/User:Maximilian_Janisch/latexlist
 +
was used.
 +
If the TeX and formula formatting is correct and if all png images have been replaced by TeX code, please remove this message and the {{TEX|semi-auto}} category.
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005026.png" /> be a [[Normed space|normed space]], let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005027.png" /> be a commuting <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005028.png" />-tuple of bounded operators on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005029.png" /> and set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005030.png" />. One defines <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005031.png" /> by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005032.png" />. Clearly, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005033.png" />, so <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005034.png" />.
+
Out of 192 formulas, 188 were replaced by TEX code.-->
  
The commuting <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005035.png" />-tuple <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005036.png" /> is said to be non-singular on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005037.png" /> if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005038.png" />. The Taylor joint spectrum, or simply the Taylor spectrum, of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005039.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005040.png" /> is the set
+
{{TEX|semi-auto}}{{TEX|part}}
 +
Let $\Lambda \equiv \Lambda [ e ] \equiv \Lambda _ { n } [ e ]$ be the [[Exterior algebra|exterior algebra]] on $n$ generators $e _ { 1 } , \ldots , e _ { n }$, with identity $e _ { 0 } \equiv 1$. $\Lambda$ is the algebra of forms in $e _ { 1 } , \ldots , e _ { n }$ with complex coefficients, subject to the collapsing property $e _ { i } e _ { j } + e _ { j } e _ { i } = 0$ ($1 \leq i , j \leq n$). Let $E _ { i } : \Lambda \rightarrow \Lambda$ denote the creation operator, given by $E _ { i } \xi : = e _ { i } \xi$ ($\xi \in \Lambda$, $1 \leq i \leq n$). If one declares $\{ e _ { i_1 } , \ldots , e _ { i_k } , i , 1 \leq i _ { 1 } &lt; \ldots &lt; i _ { k } \leq n \}$ to be an orthonormal basis, the exterior algebra $\Lambda$ becomes a [[Hilbert space|Hilbert space]], admitting an orthogonal decomposition $\Lambda = \oplus _ { k = 1 } ^ { n } \Lambda ^ { k }$, where $\operatorname { dim } \Lambda ^ { k  } = \left( \begin{array} { l } { n } \\ { k } \end{array} \right)$. Thus, each $\xi \in \Lambda$ admits a unique orthogonal decomposition $\xi = e _ { i } \xi ^ { \prime } + \xi ^ { \prime \prime }$, where $\xi ^ { \prime }$ and $\xi ''$ have no $e _ { i }$ contribution. It then readily follows that $E _ { i } ^ { * } \xi = \xi ^ { \prime }$. Indeed, each $E_i$ is a partial isometry, satisfying $E _ { i } ^ { * } E _ { j } + E _ { j } E _ { i } ^ { * } = \delta _ { i j }$ ($1 \leq i , j \leq n$).
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005041.png" /></td> </tr></table>
+
Let $\mathcal{X}$ be a [[Normed space|normed space]], let $A \equiv ( A _ { 1 } , \dots , A _ { n } )$ be a commuting $n$-tuple of bounded operators on $\mathcal{X}$ and set $\Lambda ( {\cal X} ) : = {\cal X} \otimes _ { {\bf C} } \Lambda$. One defines $D _ { A } : \Lambda ( \mathcal{X} ) \rightarrow \Lambda ( \mathcal{X} )$ by $D _ { A } : = \sum _ { i = 1 } ^ { n } A _ { i } \otimes E _ { i }$. Clearly, $D _ { A } ^ { 2 } = 0$, so <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005034.png"/>.
  
The decomposition <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005042.png" /> gives rise to a cochain complex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005043.png" />, the so-called [[Koszul complex|Koszul complex]] associated to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005044.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005045.png" />, as follows:
+
The commuting $n$-tuple $A$ is said to be non-singular on $\mathcal{X}$ if $\operatorname { Ran } D _ { A } = \operatorname { Ker } D_ { A } $. The Taylor joint spectrum, or simply the Taylor spectrum, of $A$ on $\mathcal{X}$ is the set
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005046.png" /></td> </tr></table>
+
\begin{equation*} \sigma _ { \text{T} } ( A , {\cal X} ) : = \{ \lambda \in {\bf C} ^ { n } : A - \lambda \text { is singular } \}. \end{equation*}
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005047.png" /> denotes the restriction of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005048.png" /> to the subspace <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005049.png" />. Thus,
+
The decomposition $\Lambda = \oplus _ { k = 1 } ^ { n } \Lambda ^ { k }$ gives rise to a cochain complex $K ( A , \mathcal{X} )$, the so-called [[Koszul complex|Koszul complex]] associated to $A$ on $\mathcal{X}$, as follows:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005050.png" /></td> </tr></table>
+
\begin{equation*} K ( A , {\cal X} ) : 0 \rightarrow \Lambda ^ { 0 } ( {\cal X} ) \stackrel { D _ { A } ^ { 0 } } { \rightarrow } \ldots \stackrel { D _ { A } ^ { n - 1 } } { \rightarrow } \Lambda ^ { n } ( {\cal X} ) \rightarrow 0, \end{equation*}
  
J.L. Taylor showed in [[#References|[a17]]] that if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005051.png" /> is a [[Banach space|Banach space]], then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005052.png" /> is compact, non-empty, and contained in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005053.png" />, the (joint) algebraic spectrum of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005054.png" /> (cf. also [[Spectrum of an operator|Spectrum of an operator]]) with respect to the commutant of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005055.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005056.png" />. Moreover, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005057.png" /> carries an analytic [[Functional calculus|functional calculus]] with values in the double commutant of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005058.png" />, so that, in particular, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005059.png" /> possesses the projection property.
+
where $D _ { A } ^ { k }$ denotes the restriction of $D _ { A }$ to the subspace $\Lambda ^ { k } ( \mathcal{X} )$. Thus,
  
===Example: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005060.png" />.===
+
\begin{equation*} \sigma _ {  \operatorname{T} } ( A , {\cal X} ) = \{ \lambda \in \mathbf{C} ^ { n } : K ( A - \lambda , {\cal X} ) \text{ is not exact}\}. \end{equation*}
For <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005061.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005062.png" /> admits the following <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005063.png" />-matrix relative to the direct sum decomposition <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005064.png" />:
 
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005065.png" /></td> </tr></table>
+
J.L. Taylor showed in [[#References|[a17]]] that if $\mathcal{X}$ is a [[Banach space|Banach space]], then $\sigma _ { \text{T} } ( A , \mathcal X )$ is compact, non-empty, and contained in $\sigma ^ { \prime } ( A )$, the (joint) algebraic spectrum of $A$ (cf. also [[Spectrum of an operator|Spectrum of an operator]]) with respect to the commutant of $A$, $( A ) ^ { \prime } : = \{ B \in \mathcal{L} ( \mathcal{X} ) : B A = A B \}$. Moreover, $\sigma _{\operatorname{T}}$ carries an analytic [[Functional calculus|functional calculus]] with values in the double commutant of $A$, so that, in particular, $\sigma _{\operatorname{T}}$ possesses the projection property.
  
Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005066.png" />. It follows at once that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005067.png" /> agrees with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005068.png" />, the spectrum of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005069.png" />.
+
===Example: $n = 1$.===
 +
For $n = 1$, $D _ { A }$ admits the following $( 2 \times 2 )$-matrix relative to the direct sum decomposition $( \mathcal{X} \otimes e _ { 0 } ) \oplus ( \mathcal{X} \otimes e_ { 1 } )$:
  
===Example: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005070.png" />.===
+
\begin{equation*} D _ { A } = \left( \begin{array} { l l } { 0 } &amp; { 0 } \\ { A } &amp; { 0 } \end{array} \right). \end{equation*}
For <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005071.png" />,
 
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005072.png" /></td> </tr></table>
+
Then $\operatorname { Ker } D _ { A } / \operatorname { Ran } D _ { A } = \operatorname { Ker } A \oplus ({\cal X} / \operatorname { Ran } A )$. It follows at once that $\sigma _{\operatorname{T}}$ agrees with $\sigma$, the spectrum of $A$.
  
so <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005073.png" />.
+
===Example: $n = 2$.===
 +
For $n = 2$,
  
Note that since <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005074.png" /> is defined in terms of the actions of the operators <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005075.png" /> on vectors of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005076.png" />, it is intrinsically "spatial" , as opposed to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005077.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005078.png" /> and other algebraic joint spectra. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005079.png" /> contains other well-known spatial spectra, like <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005080.png" /> (the point spectrum), <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005081.png" /> (the approximate point spectrum) and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005082.png" /> (the defect spectrum). Moreover, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005083.png" /> is a commutative Banach algebra, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005084.png" />, with each <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005085.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005086.png" /> denotes the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005087.png" />-tuple of left multiplications by the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005088.png" />s, it is not hard to show that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005089.png" />. As a matter of fact, the same result holds when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005090.png" /> is not commutative, provided all the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005091.png" />s come from the centre of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005092.png" />.
+
\begin{equation*} D _ { A } = \left( \begin{array} { c c c c } { 0 } &amp; { 0 } &amp; { 0 } &amp; { 0 } \\ { A _ { 1 } } &amp; { 0 } &amp; { 0 } &amp; { 0 } \\ { A _ { 2 } } &amp; { 0 } &amp; { 0 } &amp; { 0 } \\ { 0 } &amp; { - A _ { 2 } } &amp; { A _ { 1 } } &amp; { 0 } \end{array} \right), \end{equation*}
 +
 
 +
so <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005073.png"/>.
 +
 
 +
Note that since $\sigma _{\operatorname{T}}$ is defined in terms of the actions of the operators $A_i$ on vectors of $\mathcal{X}$, it is intrinsically "spatial" , as opposed to $\sigma ^ { \prime }$, $\sigma ^ { \prime \prime }$ and other algebraic joint spectra. $\sigma _{\operatorname{T}}$ contains other well-known spatial spectra, like $\sigma _ { \text{p} }$ (the point spectrum), $\sigma _ { \pi }$ (the approximate point spectrum) and $\sigma _ { \delta }$ (the defect spectrum). Moreover, if $\mathcal{B}$ is a commutative Banach algebra, $a \equiv ( a _ { 1 } , \dots , a _ { n } )$, with each $a _ { i } \in \mathcal{B}$, and $L _ { a }$ denotes the $n$-tuple of left multiplications by the $a_i$s, it is not hard to show that $\sigma _ { \text{T} } ( L _ { a } , \mathcal{B} ) = \sigma _ { \mathcal{B} } ( a )$. As a matter of fact, the same result holds when $\mathcal{B}$ is not commutative, provided all the $a_i$s come from the centre of $\mathcal{B}$.
  
 
===Spectral permanence.===
 
===Spectral permanence.===
When <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005093.png" /> is a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005094.png" />-algebra, say <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005095.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005096.png" /> [[#References|[a9]]]. This fact, known as spectral permanence for the Taylor spectrum, shows that for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005097.png" />-algebra elements (and also for Hilbert space operators), the non-singularity of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005098.png" /> is equivalent to the invertibility of the associated Dirac operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005099.png" />.
+
When $\mathcal{B}$ is a $C ^ { * }$-algebra, say $\mathcal{B} \subseteq \mathcal{L} ( \mathcal{H} )$, then $\sigma _ { T } ( L _ { a } , \mathcal{B} ) = \sigma _ { T } ( a , \mathcal{H} )$ [[#References|[a9]]]. This fact, known as spectral permanence for the Taylor spectrum, shows that for $C ^ { * }$-algebra elements (and also for Hilbert space operators), the non-singularity of $L _ { a }$ is equivalent to the invertibility of the associated Dirac operator $D _ { a } + D _ { a^{*} } ^ { t }$.
  
 
===Finite-dimensional case.===
 
===Finite-dimensional case.===
When <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050100.png" />,
+
When <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050100.png"/>,
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050101.png" /></td> </tr></table>
+
\begin{equation*} \sigma _ { \text{p} } = \sigma _ { \text{l} } = \sigma _ { \pi } = \sigma _ { \delta } = \sigma _ {  \text{r} } = \sigma _ {  \text{T} } = \sigma ^ { \prime } = \sigma ^ { \prime \prime } = \widehat { \sigma }, \end{equation*}
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050102.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050103.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050104.png" /> denote the left, right and polynomially convex spectra, respectively. As a matter of fact, in this case the commuting <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050105.png" />-tuple <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050106.png" /> can be simultaneously triangularized as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050107.png" />, and
+
where $\sigma_{\text{l}}$, $\sigma _ { \text{r} }$ and $\hat { \sigma }$ denote the left, right and polynomially convex spectra, respectively. As a matter of fact, in this case the commuting $n$-tuple $A$ can be simultaneously triangularized as $A _ { k } \equiv ( a _ { i ,\, j } ^ { ( k ) } ) _ { i ,\, j = 1 } ^ { \operatorname { dim } \mathcal{X} }$, and
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050108.png" /></td> </tr></table>
+
\begin{equation*} \sigma _ { T } ( A , \mathcal{X} ) = \left\{ ( a _ {ii} ^ { ( 1 ) } , \ldots , a _ { ii } ^ { ( n ) } ) : 1 \leq i \leq \operatorname { dim } \mathcal{X} \right\}. \end{equation*}
  
 
===Case of compact operators.===
 
===Case of compact operators.===
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050109.png" /> is a commuting <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050110.png" />-tuple of compact operators acting on a Banach space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050111.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050112.png" /> is countable, with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050113.png" /> as the only accumulation point. Moreover, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050114.png" />.
+
If $A$ is a commuting $n$-tuple of compact operators acting on a Banach space $\mathcal{X}$, then $\sigma _ { \text{T} } ( A , \mathcal X )$ is countable, with $( 0 , \ldots , 0 )$ as the only accumulation point. Moreover, $\sigma _ { \pi } ( A , \mathcal{X} ) = \sigma _ { \delta } ( A , \mathcal{X} ) = \sigma _ { \text{T} } ( A , \mathcal{X} )$.
  
 
===Invariant subspaces.===
 
===Invariant subspaces.===
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050115.png" /> is a Banach space, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050116.png" /> is a closed subspace of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050117.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050118.png" /> is a commuting <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050119.png" />-tuple leaving <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050120.png" /> invariant, then the union of any two of the sets <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050121.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050122.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050123.png" /> contains the third [[#References|[a17]]]. This can be seen by looking at the long cohomology sequence associated to the Koszul complex and the canonical short exact sequence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050124.png" />.
+
If $\mathcal{X}$ is a Banach space, $\mathcal{Y}$ is a closed subspace of $\mathcal{X}$ and $A$ is a commuting $n$-tuple leaving $\mathcal{Y}$ invariant, then the union of any two of the sets $\sigma _ { \text{T} } ( A , \mathcal X )$, $\sigma _ { \text{T} } ( A , \mathcal{Y} )$ and $\sigma _ { T } ( A , \mathcal{X} / \mathcal{Y} )$ contains the third [[#References|[a17]]]. This can be seen by looking at the long cohomology sequence associated to the Koszul complex and the canonical short exact sequence $0 \rightarrow {\cal Y \rightarrow X \rightarrow X / Y }\rightarrow 0$.
  
 
===Additional properties.===
 
===Additional properties.===
In addition to the above-mentioned properties of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050125.png" />, the following facts can be found in the survey article [[#References|[a10]]] and the references therein:
+
In addition to the above-mentioned properties of $\sigma _{\operatorname{T}}$, the following facts can be found in the survey article [[#References|[a10]]] and the references therein:
  
i) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050126.png" /> gives rise to a compact non-empty subset <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050127.png" /> of the maximal ideal space of any commutative Banach algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050128.png" /> containing <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050129.png" />, in such a way that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050130.png" /> [[#References|[a17]]];
+
i) $\sigma _{\operatorname{T}}$ gives rise to a compact non-empty subset $M _ { \sigma _ {  \operatorname{T} } } (\cal B , X )$ of the maximal ideal space of any commutative Banach algebra $\mathcal{B}$ containing $A$, in such a way that $\sigma _ { \text{T} } ( A , \mathcal{X} ) = \hat { A } ( M _ { \sigma _ { \text{T} } } ( \mathcal{B} , \mathcal{X} ) )$ [[#References|[a17]]];
  
ii) for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050131.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050132.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050133.png" /> denotes the Harte spectrum;
+
ii) for $n = 2$, $\partial \sigma _ { T } ( A , \mathcal{H} ) \subseteq \partial \sigma _ { H } ( A , \mathcal{H} )$, where $\sigma _ { \text{H} } : = \sigma _ { \text{I} } \cup \sigma _ { \text{r} }$ denotes the Harte spectrum;
  
 
iii) the upper semi-continuity of separate parts holds for the Taylor spectrum;
 
iii) the upper semi-continuity of separate parts holds for the Taylor spectrum;
  
iv) every isolated point in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050134.png" /> is an isolated point of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050135.png" /> (and, a fortiori, an isolated point of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050136.png" />);
+
iv) every isolated point in $\sigma _ { \mathcal{B} } ( A )$ is an isolated point of $\sigma _ { \text{T} } ( A , \mathcal{H} )$ (and, a fortiori, an isolated point of $\sigma _ { \text{l} } ( A , \mathcal{H} ) \cap \sigma _ { \text{r} } ( A , \mathcal{H} )$);
  
v) if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050137.png" />, up to approximate unitary equivalence one can always assume that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050138.png" /> [[#References|[a5]]];
+
v) if $0 \in \sigma _ { \text{T} } ( A , \mathcal{H} )$, up to approximate unitary equivalence one can always assume that $\overline { \operatorname { Ran } D _ { A } } \neq \operatorname { Ker } D _ { A }$ [[#References|[a5]]];
  
vi) the functional calculus introduced by Taylor in [[#References|[a18]]] admits a concrete realization in terms of the Bochner–Martinelli kernel (cf. [[Bochner–Martinelli representation formula|Bochner–Martinelli representation formula]]) in case <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050139.png" /> acts on a Hilbert space or on a [[C*-algebra|<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050140.png" />-algebra]] [[#References|[a20]]];
+
vi) the functional calculus introduced by Taylor in [[#References|[a18]]] admits a concrete realization in terms of the Bochner–Martinelli kernel (cf. [[Bochner–Martinelli representation formula|Bochner–Martinelli representation formula]]) in case $A$ acts on a Hilbert space or on a [[C*-algebra|$C ^ { * }$-algebra]] [[#References|[a20]]];
  
 
vii) M. Putinar established in [[#References|[a13]]] the uniqueness of the functional calculus, provided it extends the polynomial calculus.
 
vii) M. Putinar established in [[#References|[a13]]] the uniqueness of the functional calculus, provided it extends the polynomial calculus.
  
===Fredholm <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050141.png" />-tuples.===
+
===Fredholm $n$-tuples.===
In a way entirely similar to the development of Fredholm theory, one can define the notion of Fredholm <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050142.png" />-tuple: a commuting <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050143.png" />-tuple <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050144.png" /> is said to be Fredholm on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050145.png" /> if the associated Koszul complex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050146.png" /> has finite-dimensional cohomology spaces. The Taylor essential spectrum of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050147.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050148.png" /> is then
+
In a way entirely similar to the development of Fredholm theory, one can define the notion of Fredholm $n$-tuple: a commuting $n$-tuple $A$ is said to be Fredholm on $\mathcal{X}$ if the associated Koszul complex $K ( A , \mathcal{X} )$ has finite-dimensional cohomology spaces. The Taylor essential spectrum of $A$ on $\mathcal{X}$ is then
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050149.png" /></td> </tr></table>
+
\begin{equation*} \sigma _ { \text{Te} } ( A , \mathcal{X} ) : = \{ \lambda \in \mathbf{C} ^ { n } : A - \lambda \ \text{is not Fredholm} \}. \end{equation*}
  
The Fredholm index of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050150.png" /> is defined as the [[Euler characteristic|Euler characteristic]] of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050151.png" />. For example, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050152.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050153.png" />. In a Hilbert space, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050154.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050155.png" /> is the coset of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050156.png" /> in the Calkin algebra for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050157.png" />.
+
The Fredholm index of $A$ is defined as the [[Euler characteristic|Euler characteristic]] of $K ( A , \mathcal{X} )$. For example, if $n = 2$, $\operatorname{index}( A ) = \operatorname { dim } \operatorname { Ker } D _ { A } ^ { 0 } - \operatorname { dim } ( \operatorname { Ker } D _ { A } ^ { 1 } / \operatorname { Ran } D _ { A } ^ { 0 } ) + \operatorname { dim } ( {\cal X} / \operatorname { Ran } D _ { A } ^ { 1 } )$. In a Hilbert space, $\sigma _ { \text{Te} } ( A , \mathcal{H} ) = \sigma _ {  \text{T} } ( L _ { a } , \mathcal{Q} ( \mathcal{H} ) )$, where $a : = \pi ( A )$ is the coset of $A$ in the Calkin algebra for $\mathcal{H}$.
  
 
===Example.===
 
===Example.===
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050158.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050159.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050160.png" />), then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050161.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050162.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050163.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050164.png" />).
+
If $\mathcal H = H ^ { 2 } ( S ^ { 3 } )$ and $A _ { i } : = M _ { z _ { i } }$ ($i = 1,2$), then $\sigma _ { \text{l}} ( A ) = \sigma _ { \text{le} } ( A ) = \sigma _ { \text{re} } ( A ) = \sigma _ { \text{Te} } ( A ) = S ^ { 3 }$, $\sigma _ { r } ( A ) = \sigma _ { T } ( A ) = \mathbf{B} _ { 4 }$, and $\operatorname{index}( A - \lambda ) = 1$ ($\lambda \in \mathbf{B} _ { 4 }$).
  
The Taylor spectral and Fredholm theories of multiplication operators acting on Bergman spaces over Reinhardt domains or bounded pseudo-convex domains, or acting on the Hardy spaces over the Shilov boundary of bounded symmetric domains on several complex variables, have been described in [[#References|[a4]]], [[#References|[a3]]], [[#References|[a6]]], [[#References|[a7]]], [[#References|[a8]]], [[#References|[a16]]], [[#References|[a15]]], [[#References|[a19]]], and [[#References|[a21]]]; for Toeplitz operators with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050166.png" /> symbols acting on bounded pseudo-convex domains, concrete descriptions appear in [[#References|[a11]]].
+
The Taylor spectral and Fredholm theories of multiplication operators acting on Bergman spaces over Reinhardt domains or bounded pseudo-convex domains, or acting on the Hardy spaces over the [[Shilov boundary]] of bounded symmetric domains on several complex variables, have been described in [[#References|[a4]]], [[#References|[a3]]], [[#References|[a6]]], [[#References|[a7]]], [[#References|[a8]]], [[#References|[a16]]], [[#References|[a15]]], [[#References|[a19]]], and [[#References|[a21]]]; for Toeplitz operators with $H ^ { \infty }$ symbols acting on bounded pseudo-convex domains, concrete descriptions appear in [[#References|[a11]]].
  
 
===Spectral inclusion.===
 
===Spectral inclusion.===
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050167.png" /> is a subnormal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050168.png" />-tuple acting on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050169.png" /> with minimal normal extension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050170.png" /> acting on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050171.png" /> (cf. also [[Normal operator|Normal operator]]), <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050172.png" /> [[#References|[a14]]].
+
If $S$ is a subnormal $n$-tuple acting on $\mathcal{H}$ with minimal normal extension $N$ acting on $\mathcal{K}$ (cf. also [[Normal operator|Normal operator]]), $\sigma _ { \text{T} } ( N , \mathcal{K} ) \subseteq \sigma _ {  \text{T} } ( S , \mathcal{H} ) \subseteq \hat { \sigma } ( N , \mathcal{K} )$ [[#References|[a14]]].
  
 
===Left and right multiplications.===
 
===Left and right multiplications.===
For <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050173.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050174.png" /> two commuting <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050175.png" />-tuples of operators on a Hilbert space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050176.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050177.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050178.png" /> the associated <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050179.png" />-tuples of left and right multiplication operators [[#References|[a5]]],
+
For $A$ and $B$ two commuting $n$-tuples of operators on a Hilbert space $\mathcal{H}$, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050177.png"/> and $R _ { B }$ the associated $n$-tuples of left and right multiplication operators [[#References|[a5]]],
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050180.png" /></td> </tr></table>
+
\begin{equation*} \sigma _ { \operatorname{T} } ( ( L _ { A } , R _ { B } ) , \mathcal{L} ( \mathcal{H} ) ) = \sigma _ { \operatorname{T} } ( A , \mathcal{H} ) \times \sigma _ { T } ( B , \mathcal{H} ) \end{equation*}
  
 
and
 
and
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050181.png" /></td> </tr></table>
+
\begin{equation*} \sigma _ { \text{Te} } ( ( L _ { A } , R _ { B } ) , \mathcal{L} ( \mathcal{H} ) ) = \end{equation*}
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050182.png" /></td> </tr></table>
+
\begin{equation*} = [ \sigma _ {  \operatorname{Te} } ( A , {\cal H} ) \times \sigma _ {  \operatorname{T} } ( B , {\cal H} ) ] \bigcup [ \sigma _ {  \operatorname{T} } ( A , {\cal H} ) \times \sigma _ {  \operatorname{Te} } ( B , {\cal H} ) ]. \end{equation*}
  
During the 1980s and 1990s, Taylor spectral theory has received considerable attention; for further details and information, see [[#References|[a2]]], [[#References|[a11]]], [[#References|[a20]]], [[#References|[a10]]], [[#References|[a1]]]. There is also a parallel "local spectral theory" , described in [[#References|[a11]]], [[#References|[a12]]] and [[#References|[a20]]].
+
During the 1980s and 1990s, Taylor spectral theory has received considerable attention; for further details and information, see [[#References|[a2]]], [[#References|[a11]]], [[#References|[a20]]], [[#References|[a10]]], [[#References|[a1]]]. There is also a parallel "local spectral theory" , described in [[#References|[a11]]], [[#References|[a12]]] and [[#References|[a20]]].
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> E. Albrecht,   F.-H. Vasilescu,   "Semi-Fredholm complexes" ''Oper. Th. Adv. Appl.'' , '''11''' (1983) pp. 15–39</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> C.-G. Ambrozie,   F.-H. Vasilescu,   "Banach space complexes" , Kluwer Acad. Publ. (1995)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> C. Berger,   L. Coburn,   A. Koranyi,   "Opérateurs de Wiener–Hopf sur les spheres de Lie" ''C.R. Acad. Sci. Paris Sér. A'' , '''290''' (1980) pp. 989–991</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> C. Berger,   L. Coburn,   "Wiener–Hopf operators on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050183.png" />"  ''Integral Eq. Oper. Th.'' , '''2''' (1979) pp. 139–173</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> R. Curto,   L. Fialkow,   "The spectral picture of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050184.png" />"  ''J. Funct. Anal.'' , '''71''' (1987) pp. 371–392</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top"> R. Curto,   P. Muhly,   "<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050185.png" />-algebras of multiplication operators on Bergman spaces"  ''J. Funct. Anal.'' , '''64''' (1985) pp. 315–329</TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top"> R. Curto,   N. Salinas,   "Spectral properties of cyclic subnormal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050186.png" />-tuples"  ''Amer. J. Math.'' , '''107''' (1985) pp. 113–138</TD></TR><TR><TD valign="top">[a8]</TD> <TD valign="top"> R. Curto,   K. Yan,   "The spectral picture of Reinhardt measures" ''J. Funct. Anal.'' , '''131''' (1995) pp. 279–301</TD></TR><TR><TD valign="top">[a9]</TD> <TD valign="top"> R. Curto,   "Spectral permanence for joint spectra" ''Trans. Amer. Math. Soc.'' , '''270''' (1982) pp. 659–665</TD></TR><TR><TD valign="top">[a10]</TD> <TD valign="top"> R. Curto,   "Applications of several complex variables to multiparameter spectral theory" J.B. Conway (ed.) B.B. Morrel (ed.) , ''Surveys of Some Recent Results in Operator Theory II'' , ''Pitman Res. Notes in Math.'' , '''192''' , Longman Sci. Tech. (1988) pp. 25–90</TD></TR><TR><TD valign="top">[a11]</TD> <TD valign="top"> J. Eschmeier,   M. Putinar,   "Spectral decompositions and analytic sheaves" , ''London Math. Soc. Monographs'' , Oxford Sci. Publ. (1996)</TD></TR><TR><TD valign="top">[a12]</TD> <TD valign="top"> K. Laursen,   M. Neumann,   "Introduction to local spectral theory" , ''London Math. Soc. Monographs'' , Oxford Univ. Press (2000)</TD></TR><TR><TD valign="top">[a13]</TD> <TD valign="top"> M. Putinar,   "Uniqueness of Taylor's functional calculus" ''Proc. Amer. Math. Soc.'' , '''89''' (1983) pp. 647–650</TD></TR><TR><TD valign="top">[a14]</TD> <TD valign="top"> M. Putinar,   "Spectral inclusion for subnormal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050187.png" />-tuples"  ''Proc. Amer. Math. Soc.'' , '''90''' (1984) pp. 405–406</TD></TR><TR><TD valign="top">[a15]</TD> <TD valign="top"> N. Salinas,   A. Sheu,   H. Upmeier,   "Toeplitz operators on pseudoconvex domains and foliation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050188.png" />-algebras" ''Ann. of Math.'' , '''130''' (1989) pp. 531–565</TD></TR><TR><TD valign="top">[a16]</TD> <TD valign="top"> N. Salinas,   "The <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050189.png" />-formalism and the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050190.png" />-algebra of the Bergman <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050191.png" />-tuple"  ''J. Oper. Th.'' , '''22''' (1989) pp. 325–343</TD></TR><TR><TD valign="top">[a17]</TD> <TD valign="top"> J.L. Taylor,   "A joint spectrum for several commuting operators" ''J. Funct. Anal.'' , '''6''' (1970) pp. 172–191</TD></TR><TR><TD valign="top">[a18]</TD> <TD valign="top"> J.L. Taylor,   "The analytic functional calculus for several commuting operators" ''Acta Math.'' , '''125''' (1970) pp. 1–48</TD></TR><TR><TD valign="top">[a19]</TD> <TD valign="top"> H. Upmeier,   "Toeplitz <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050192.png" />-algebras on bounded symmetric domains" ''Ann. of Math.'' , '''119'''  (1984)  pp. 549–576</TD></TR><TR><TD valign="top">[a20]</TD> <TD valign="top">  F.-H. Vasilescu,  "Analytic functional calculus and spectral decompositions" , Reidel  (1982)</TD></TR><TR><TD valign="top">[a21]</TD> <TD valign="top">  U. Venugopalkrishna,  "Fredholm operators associated with strongly pseudoconvex domains in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050193.png" />"  ''J. Funct. Anal.'' , '''9''' (1972) pp. 349–373</TD></TR></table>
+
<table><tr><td valign="top">[a1]</td> <td valign="top"> E. Albrecht, F.-H. Vasilescu, "Semi-Fredholm complexes" ''Oper. Th. Adv. Appl.'' , '''11''' (1983) pp. 15–39 {{MR|0789629}} {{ZBL|0527.47008}} </td></tr><tr><td valign="top">[a2]</td> <td valign="top"> C.-G. Ambrozie, F.-H. Vasilescu, "Banach space complexes" , Kluwer Acad. Publ. (1995) {{MR|1357165}} {{ZBL|0837.47009}} </td></tr><tr><td valign="top">[a3]</td> <td valign="top"> C. Berger, L. Coburn, A. Koranyi, "Opérateurs de Wiener–Hopf sur les spheres de Lie" ''C.R. Acad. Sci. Paris Sér. A'' , '''290''' (1980) pp. 989–991 {{MR|584284}} {{ZBL|0436.47021}} </td></tr><tr><td valign="top">[a4]</td> <td valign="top"> C. Berger, L. Coburn, "Wiener–Hopf operators on $U _ { 2 }$" ''Integral Eq. Oper. Th.'' , '''2''' (1979) pp. 139–173 {{MR|0543881}} {{ZBL|0434.47019}} </td></tr><tr><td valign="top">[a5]</td> <td valign="top"> R. Curto, L. Fialkow, "The spectral picture of $( L_{A} , R _ { B } )$" ''J. Funct. Anal.'' , '''71''' (1987) pp. 371–392 {{MR|0880986}} {{ZBL|0626.47018}} </td></tr><tr><td valign="top">[a6]</td> <td valign="top"> R. Curto, P. Muhly, "$C ^ { * }$-algebras of multiplication operators on Bergman spaces" ''J. Funct. Anal.'' , '''64''' (1985) pp. 315–329 {{MR|0813203}} {{ZBL|0583.46049}} </td></tr><tr><td valign="top">[a7]</td> <td valign="top"> R. Curto, N. Salinas, "Spectral properties of cyclic subnormal $m$-tuples" ''Amer. J. Math.'' , '''107''' (1985) pp. 113–138 {{MR|778091}} {{ZBL|}} </td></tr><tr><td valign="top">[a8]</td> <td valign="top"> R. Curto, K. Yan, "The spectral picture of Reinhardt measures" ''J. Funct. Anal.'' , '''131''' (1995) pp. 279–301 {{MR|1345033}} {{ZBL|0826.47002}} </td></tr><tr><td valign="top">[a9]</td> <td valign="top"> R. Curto, "Spectral permanence for joint spectra" ''Trans. Amer. Math. Soc.'' , '''270''' (1982) pp. 659–665 {{MR|0645336}} {{ZBL|0508.47039}} {{ZBL|0491.47020}} </td></tr><tr><td valign="top">[a10]</td> <td valign="top"> R. Curto, "Applications of several complex variables to multiparameter spectral theory" J.B. Conway (ed.) B.B. Morrel (ed.) , ''Surveys of Some Recent Results in Operator Theory II'' , ''Pitman Res. Notes in Math.'' , '''192''' , Longman Sci. Tech. (1988) pp. 25–90 {{MR|0976843}} {{ZBL|0827.47005}} </td></tr><tr><td valign="top">[a11]</td> <td valign="top"> J. Eschmeier, M. Putinar, "Spectral decompositions and analytic sheaves" , ''London Math. Soc. Monographs'' , Oxford Sci. Publ. (1996) {{MR|1420618}} {{ZBL|0855.47013}} </td></tr><tr><td valign="top">[a12]</td> <td valign="top"> K. Laursen, M. Neumann, "Introduction to local spectral theory" , ''London Math. Soc. Monographs'' , Oxford Univ. Press (2000) {{MR|1747914}} {{ZBL|0957.47004}} </td></tr><tr><td valign="top">[a13]</td> <td valign="top"> M. Putinar, "Uniqueness of Taylor's functional calculus" ''Proc. Amer. Math. Soc.'' , '''89''' (1983) pp. 647–650 {{MR|718990}} {{ZBL|}} </td></tr><tr><td valign="top">[a14]</td> <td valign="top"> M. Putinar, "Spectral inclusion for subnormal $n$-tuples" ''Proc. Amer. Math. Soc.'' , '''90''' (1984) pp. 405–406 {{MR|728357}} {{ZBL|}} </td></tr><tr><td valign="top">[a15]</td> <td valign="top"> N. Salinas, A. Sheu, H. Upmeier, "Toeplitz operators on pseudoconvex domains and foliation $C ^ { * }$-algebras" ''Ann. of Math.'' , '''130''' (1989) pp. 531–565 {{MR|1025166}} {{ZBL|}} </td></tr><tr><td valign="top">[a16]</td> <td valign="top"> N. Salinas, "The $\overline { \partial }$-formalism and the $C ^ { * }$-algebra of the Bergman $n$-tuple" ''J. Oper. Th.'' , '''22''' (1989) pp. 325–343 {{MR|1043731}} {{ZBL|}} </td></tr><tr><td valign="top">[a17]</td> <td valign="top"> J.L. Taylor, "A joint spectrum for several commuting operators" ''J. Funct. Anal.'' , '''6''' (1970) pp. 172–191 {{MR|0268706}} {{ZBL|0233.47024}} </td></tr><tr><td valign="top">[a18]</td> <td valign="top"> J.L. Taylor, "The analytic functional calculus for several commuting operators" ''Acta Math.'' , '''125''' (1970) pp. 1–48 {{MR|0271741}} {{ZBL|0233.47025}} </td></tr><tr><td valign="top">[a19]</td> <td valign="top"> H. Upmeier, "Toeplitz $C ^ { * }$-algebras on bounded symmetric domains" ''Ann. of Math.'' , '''119''' (1984) pp. 549–576 {{MR|744863}} {{ZBL|}} </td></tr><tr><td valign="top">[a20]</td> <td valign="top"> F.-H. Vasilescu, "Analytic functional calculus and spectral decompositions" , Reidel (1982) {{MR|0690957}} {{ZBL|0495.47013}} </td></tr><tr><td valign="top">[a21]</td> <td valign="top"> U. Venugopalkrishna, "Fredholm operators associated with strongly pseudoconvex domains in $\mathbf{C} ^ { n }$" ''J. Funct. Anal.'' , '''9''' (1972) pp. 349–373 {{MR|0315502}} {{ZBL|0241.47023}} </td></tr></table>

Latest revision as of 17:44, 1 July 2020

Let $\Lambda \equiv \Lambda [ e ] \equiv \Lambda _ { n } [ e ]$ be the exterior algebra on $n$ generators $e _ { 1 } , \ldots , e _ { n }$, with identity $e _ { 0 } \equiv 1$. $\Lambda$ is the algebra of forms in $e _ { 1 } , \ldots , e _ { n }$ with complex coefficients, subject to the collapsing property $e _ { i } e _ { j } + e _ { j } e _ { i } = 0$ ($1 \leq i , j \leq n$). Let $E _ { i } : \Lambda \rightarrow \Lambda$ denote the creation operator, given by $E _ { i } \xi : = e _ { i } \xi$ ($\xi \in \Lambda$, $1 \leq i \leq n$). If one declares $\{ e _ { i_1 } , \ldots , e _ { i_k } , i , 1 \leq i _ { 1 } < \ldots < i _ { k } \leq n \}$ to be an orthonormal basis, the exterior algebra $\Lambda$ becomes a Hilbert space, admitting an orthogonal decomposition $\Lambda = \oplus _ { k = 1 } ^ { n } \Lambda ^ { k }$, where $\operatorname { dim } \Lambda ^ { k } = \left( \begin{array} { l } { n } \\ { k } \end{array} \right)$. Thus, each $\xi \in \Lambda$ admits a unique orthogonal decomposition $\xi = e _ { i } \xi ^ { \prime } + \xi ^ { \prime \prime }$, where $\xi ^ { \prime }$ and $\xi ''$ have no $e _ { i }$ contribution. It then readily follows that $E _ { i } ^ { * } \xi = \xi ^ { \prime }$. Indeed, each $E_i$ is a partial isometry, satisfying $E _ { i } ^ { * } E _ { j } + E _ { j } E _ { i } ^ { * } = \delta _ { i j }$ ($1 \leq i , j \leq n$).

Let $\mathcal{X}$ be a normed space, let $A \equiv ( A _ { 1 } , \dots , A _ { n } )$ be a commuting $n$-tuple of bounded operators on $\mathcal{X}$ and set $\Lambda ( {\cal X} ) : = {\cal X} \otimes _ { {\bf C} } \Lambda$. One defines $D _ { A } : \Lambda ( \mathcal{X} ) \rightarrow \Lambda ( \mathcal{X} )$ by $D _ { A } : = \sum _ { i = 1 } ^ { n } A _ { i } \otimes E _ { i }$. Clearly, $D _ { A } ^ { 2 } = 0$, so .

The commuting $n$-tuple $A$ is said to be non-singular on $\mathcal{X}$ if $\operatorname { Ran } D _ { A } = \operatorname { Ker } D_ { A } $. The Taylor joint spectrum, or simply the Taylor spectrum, of $A$ on $\mathcal{X}$ is the set

\begin{equation*} \sigma _ { \text{T} } ( A , {\cal X} ) : = \{ \lambda \in {\bf C} ^ { n } : A - \lambda \text { is singular } \}. \end{equation*}

The decomposition $\Lambda = \oplus _ { k = 1 } ^ { n } \Lambda ^ { k }$ gives rise to a cochain complex $K ( A , \mathcal{X} )$, the so-called Koszul complex associated to $A$ on $\mathcal{X}$, as follows:

\begin{equation*} K ( A , {\cal X} ) : 0 \rightarrow \Lambda ^ { 0 } ( {\cal X} ) \stackrel { D _ { A } ^ { 0 } } { \rightarrow } \ldots \stackrel { D _ { A } ^ { n - 1 } } { \rightarrow } \Lambda ^ { n } ( {\cal X} ) \rightarrow 0, \end{equation*}

where $D _ { A } ^ { k }$ denotes the restriction of $D _ { A }$ to the subspace $\Lambda ^ { k } ( \mathcal{X} )$. Thus,

\begin{equation*} \sigma _ { \operatorname{T} } ( A , {\cal X} ) = \{ \lambda \in \mathbf{C} ^ { n } : K ( A - \lambda , {\cal X} ) \text{ is not exact}\}. \end{equation*}

J.L. Taylor showed in [a17] that if $\mathcal{X}$ is a Banach space, then $\sigma _ { \text{T} } ( A , \mathcal X )$ is compact, non-empty, and contained in $\sigma ^ { \prime } ( A )$, the (joint) algebraic spectrum of $A$ (cf. also Spectrum of an operator) with respect to the commutant of $A$, $( A ) ^ { \prime } : = \{ B \in \mathcal{L} ( \mathcal{X} ) : B A = A B \}$. Moreover, $\sigma _{\operatorname{T}}$ carries an analytic functional calculus with values in the double commutant of $A$, so that, in particular, $\sigma _{\operatorname{T}}$ possesses the projection property.

Example: $n = 1$.

For $n = 1$, $D _ { A }$ admits the following $( 2 \times 2 )$-matrix relative to the direct sum decomposition $( \mathcal{X} \otimes e _ { 0 } ) \oplus ( \mathcal{X} \otimes e_ { 1 } )$:

\begin{equation*} D _ { A } = \left( \begin{array} { l l } { 0 } & { 0 } \\ { A } & { 0 } \end{array} \right). \end{equation*}

Then $\operatorname { Ker } D _ { A } / \operatorname { Ran } D _ { A } = \operatorname { Ker } A \oplus ({\cal X} / \operatorname { Ran } A )$. It follows at once that $\sigma _{\operatorname{T}}$ agrees with $\sigma$, the spectrum of $A$.

Example: $n = 2$.

For $n = 2$,

\begin{equation*} D _ { A } = \left( \begin{array} { c c c c } { 0 } & { 0 } & { 0 } & { 0 } \\ { A _ { 1 } } & { 0 } & { 0 } & { 0 } \\ { A _ { 2 } } & { 0 } & { 0 } & { 0 } \\ { 0 } & { - A _ { 2 } } & { A _ { 1 } } & { 0 } \end{array} \right), \end{equation*}

so .

Note that since $\sigma _{\operatorname{T}}$ is defined in terms of the actions of the operators $A_i$ on vectors of $\mathcal{X}$, it is intrinsically "spatial" , as opposed to $\sigma ^ { \prime }$, $\sigma ^ { \prime \prime }$ and other algebraic joint spectra. $\sigma _{\operatorname{T}}$ contains other well-known spatial spectra, like $\sigma _ { \text{p} }$ (the point spectrum), $\sigma _ { \pi }$ (the approximate point spectrum) and $\sigma _ { \delta }$ (the defect spectrum). Moreover, if $\mathcal{B}$ is a commutative Banach algebra, $a \equiv ( a _ { 1 } , \dots , a _ { n } )$, with each $a _ { i } \in \mathcal{B}$, and $L _ { a }$ denotes the $n$-tuple of left multiplications by the $a_i$s, it is not hard to show that $\sigma _ { \text{T} } ( L _ { a } , \mathcal{B} ) = \sigma _ { \mathcal{B} } ( a )$. As a matter of fact, the same result holds when $\mathcal{B}$ is not commutative, provided all the $a_i$s come from the centre of $\mathcal{B}$.

Spectral permanence.

When $\mathcal{B}$ is a $C ^ { * }$-algebra, say $\mathcal{B} \subseteq \mathcal{L} ( \mathcal{H} )$, then $\sigma _ { T } ( L _ { a } , \mathcal{B} ) = \sigma _ { T } ( a , \mathcal{H} )$ [a9]. This fact, known as spectral permanence for the Taylor spectrum, shows that for $C ^ { * }$-algebra elements (and also for Hilbert space operators), the non-singularity of $L _ { a }$ is equivalent to the invertibility of the associated Dirac operator $D _ { a } + D _ { a^{*} } ^ { t }$.

Finite-dimensional case.

When ,

\begin{equation*} \sigma _ { \text{p} } = \sigma _ { \text{l} } = \sigma _ { \pi } = \sigma _ { \delta } = \sigma _ { \text{r} } = \sigma _ { \text{T} } = \sigma ^ { \prime } = \sigma ^ { \prime \prime } = \widehat { \sigma }, \end{equation*}

where $\sigma_{\text{l}}$, $\sigma _ { \text{r} }$ and $\hat { \sigma }$ denote the left, right and polynomially convex spectra, respectively. As a matter of fact, in this case the commuting $n$-tuple $A$ can be simultaneously triangularized as $A _ { k } \equiv ( a _ { i ,\, j } ^ { ( k ) } ) _ { i ,\, j = 1 } ^ { \operatorname { dim } \mathcal{X} }$, and

\begin{equation*} \sigma _ { T } ( A , \mathcal{X} ) = \left\{ ( a _ {ii} ^ { ( 1 ) } , \ldots , a _ { ii } ^ { ( n ) } ) : 1 \leq i \leq \operatorname { dim } \mathcal{X} \right\}. \end{equation*}

Case of compact operators.

If $A$ is a commuting $n$-tuple of compact operators acting on a Banach space $\mathcal{X}$, then $\sigma _ { \text{T} } ( A , \mathcal X )$ is countable, with $( 0 , \ldots , 0 )$ as the only accumulation point. Moreover, $\sigma _ { \pi } ( A , \mathcal{X} ) = \sigma _ { \delta } ( A , \mathcal{X} ) = \sigma _ { \text{T} } ( A , \mathcal{X} )$.

Invariant subspaces.

If $\mathcal{X}$ is a Banach space, $\mathcal{Y}$ is a closed subspace of $\mathcal{X}$ and $A$ is a commuting $n$-tuple leaving $\mathcal{Y}$ invariant, then the union of any two of the sets $\sigma _ { \text{T} } ( A , \mathcal X )$, $\sigma _ { \text{T} } ( A , \mathcal{Y} )$ and $\sigma _ { T } ( A , \mathcal{X} / \mathcal{Y} )$ contains the third [a17]. This can be seen by looking at the long cohomology sequence associated to the Koszul complex and the canonical short exact sequence $0 \rightarrow {\cal Y \rightarrow X \rightarrow X / Y }\rightarrow 0$.

Additional properties.

In addition to the above-mentioned properties of $\sigma _{\operatorname{T}}$, the following facts can be found in the survey article [a10] and the references therein:

i) $\sigma _{\operatorname{T}}$ gives rise to a compact non-empty subset $M _ { \sigma _ { \operatorname{T} } } (\cal B , X )$ of the maximal ideal space of any commutative Banach algebra $\mathcal{B}$ containing $A$, in such a way that $\sigma _ { \text{T} } ( A , \mathcal{X} ) = \hat { A } ( M _ { \sigma _ { \text{T} } } ( \mathcal{B} , \mathcal{X} ) )$ [a17];

ii) for $n = 2$, $\partial \sigma _ { T } ( A , \mathcal{H} ) \subseteq \partial \sigma _ { H } ( A , \mathcal{H} )$, where $\sigma _ { \text{H} } : = \sigma _ { \text{I} } \cup \sigma _ { \text{r} }$ denotes the Harte spectrum;

iii) the upper semi-continuity of separate parts holds for the Taylor spectrum;

iv) every isolated point in $\sigma _ { \mathcal{B} } ( A )$ is an isolated point of $\sigma _ { \text{T} } ( A , \mathcal{H} )$ (and, a fortiori, an isolated point of $\sigma _ { \text{l} } ( A , \mathcal{H} ) \cap \sigma _ { \text{r} } ( A , \mathcal{H} )$);

v) if $0 \in \sigma _ { \text{T} } ( A , \mathcal{H} )$, up to approximate unitary equivalence one can always assume that $\overline { \operatorname { Ran } D _ { A } } \neq \operatorname { Ker } D _ { A }$ [a5];

vi) the functional calculus introduced by Taylor in [a18] admits a concrete realization in terms of the Bochner–Martinelli kernel (cf. Bochner–Martinelli representation formula) in case $A$ acts on a Hilbert space or on a $C ^ { * }$-algebra [a20];

vii) M. Putinar established in [a13] the uniqueness of the functional calculus, provided it extends the polynomial calculus.

Fredholm $n$-tuples.

In a way entirely similar to the development of Fredholm theory, one can define the notion of Fredholm $n$-tuple: a commuting $n$-tuple $A$ is said to be Fredholm on $\mathcal{X}$ if the associated Koszul complex $K ( A , \mathcal{X} )$ has finite-dimensional cohomology spaces. The Taylor essential spectrum of $A$ on $\mathcal{X}$ is then

\begin{equation*} \sigma _ { \text{Te} } ( A , \mathcal{X} ) : = \{ \lambda \in \mathbf{C} ^ { n } : A - \lambda \ \text{is not Fredholm} \}. \end{equation*}

The Fredholm index of $A$ is defined as the Euler characteristic of $K ( A , \mathcal{X} )$. For example, if $n = 2$, $\operatorname{index}( A ) = \operatorname { dim } \operatorname { Ker } D _ { A } ^ { 0 } - \operatorname { dim } ( \operatorname { Ker } D _ { A } ^ { 1 } / \operatorname { Ran } D _ { A } ^ { 0 } ) + \operatorname { dim } ( {\cal X} / \operatorname { Ran } D _ { A } ^ { 1 } )$. In a Hilbert space, $\sigma _ { \text{Te} } ( A , \mathcal{H} ) = \sigma _ { \text{T} } ( L _ { a } , \mathcal{Q} ( \mathcal{H} ) )$, where $a : = \pi ( A )$ is the coset of $A$ in the Calkin algebra for $\mathcal{H}$.

Example.

If $\mathcal H = H ^ { 2 } ( S ^ { 3 } )$ and $A _ { i } : = M _ { z _ { i } }$ ($i = 1,2$), then $\sigma _ { \text{l}} ( A ) = \sigma _ { \text{le} } ( A ) = \sigma _ { \text{re} } ( A ) = \sigma _ { \text{Te} } ( A ) = S ^ { 3 }$, $\sigma _ { r } ( A ) = \sigma _ { T } ( A ) = \mathbf{B} _ { 4 }$, and $\operatorname{index}( A - \lambda ) = 1$ ($\lambda \in \mathbf{B} _ { 4 }$).

The Taylor spectral and Fredholm theories of multiplication operators acting on Bergman spaces over Reinhardt domains or bounded pseudo-convex domains, or acting on the Hardy spaces over the Shilov boundary of bounded symmetric domains on several complex variables, have been described in [a4], [a3], [a6], [a7], [a8], [a16], [a15], [a19], and [a21]; for Toeplitz operators with $H ^ { \infty }$ symbols acting on bounded pseudo-convex domains, concrete descriptions appear in [a11].

Spectral inclusion.

If $S$ is a subnormal $n$-tuple acting on $\mathcal{H}$ with minimal normal extension $N$ acting on $\mathcal{K}$ (cf. also Normal operator), $\sigma _ { \text{T} } ( N , \mathcal{K} ) \subseteq \sigma _ { \text{T} } ( S , \mathcal{H} ) \subseteq \hat { \sigma } ( N , \mathcal{K} )$ [a14].

Left and right multiplications.

For $A$ and $B$ two commuting $n$-tuples of operators on a Hilbert space $\mathcal{H}$, and and $R _ { B }$ the associated $n$-tuples of left and right multiplication operators [a5],

\begin{equation*} \sigma _ { \operatorname{T} } ( ( L _ { A } , R _ { B } ) , \mathcal{L} ( \mathcal{H} ) ) = \sigma _ { \operatorname{T} } ( A , \mathcal{H} ) \times \sigma _ { T } ( B , \mathcal{H} ) \end{equation*}

and

\begin{equation*} \sigma _ { \text{Te} } ( ( L _ { A } , R _ { B } ) , \mathcal{L} ( \mathcal{H} ) ) = \end{equation*}

\begin{equation*} = [ \sigma _ { \operatorname{Te} } ( A , {\cal H} ) \times \sigma _ { \operatorname{T} } ( B , {\cal H} ) ] \bigcup [ \sigma _ { \operatorname{T} } ( A , {\cal H} ) \times \sigma _ { \operatorname{Te} } ( B , {\cal H} ) ]. \end{equation*}

During the 1980s and 1990s, Taylor spectral theory has received considerable attention; for further details and information, see [a2], [a11], [a20], [a10], [a1]. There is also a parallel "local spectral theory" , described in [a11], [a12] and [a20].

References

[a1] E. Albrecht, F.-H. Vasilescu, "Semi-Fredholm complexes" Oper. Th. Adv. Appl. , 11 (1983) pp. 15–39 MR0789629 Zbl 0527.47008
[a2] C.-G. Ambrozie, F.-H. Vasilescu, "Banach space complexes" , Kluwer Acad. Publ. (1995) MR1357165 Zbl 0837.47009
[a3] C. Berger, L. Coburn, A. Koranyi, "Opérateurs de Wiener–Hopf sur les spheres de Lie" C.R. Acad. Sci. Paris Sér. A , 290 (1980) pp. 989–991 MR584284 Zbl 0436.47021
[a4] C. Berger, L. Coburn, "Wiener–Hopf operators on $U _ { 2 }$" Integral Eq. Oper. Th. , 2 (1979) pp. 139–173 MR0543881 Zbl 0434.47019
[a5] R. Curto, L. Fialkow, "The spectral picture of $( L_{A} , R _ { B } )$" J. Funct. Anal. , 71 (1987) pp. 371–392 MR0880986 Zbl 0626.47018
[a6] R. Curto, P. Muhly, "$C ^ { * }$-algebras of multiplication operators on Bergman spaces" J. Funct. Anal. , 64 (1985) pp. 315–329 MR0813203 Zbl 0583.46049
[a7] R. Curto, N. Salinas, "Spectral properties of cyclic subnormal $m$-tuples" Amer. J. Math. , 107 (1985) pp. 113–138 MR778091
[a8] R. Curto, K. Yan, "The spectral picture of Reinhardt measures" J. Funct. Anal. , 131 (1995) pp. 279–301 MR1345033 Zbl 0826.47002
[a9] R. Curto, "Spectral permanence for joint spectra" Trans. Amer. Math. Soc. , 270 (1982) pp. 659–665 MR0645336 Zbl 0508.47039 Zbl 0491.47020
[a10] R. Curto, "Applications of several complex variables to multiparameter spectral theory" J.B. Conway (ed.) B.B. Morrel (ed.) , Surveys of Some Recent Results in Operator Theory II , Pitman Res. Notes in Math. , 192 , Longman Sci. Tech. (1988) pp. 25–90 MR0976843 Zbl 0827.47005
[a11] J. Eschmeier, M. Putinar, "Spectral decompositions and analytic sheaves" , London Math. Soc. Monographs , Oxford Sci. Publ. (1996) MR1420618 Zbl 0855.47013
[a12] K. Laursen, M. Neumann, "Introduction to local spectral theory" , London Math. Soc. Monographs , Oxford Univ. Press (2000) MR1747914 Zbl 0957.47004
[a13] M. Putinar, "Uniqueness of Taylor's functional calculus" Proc. Amer. Math. Soc. , 89 (1983) pp. 647–650 MR718990
[a14] M. Putinar, "Spectral inclusion for subnormal $n$-tuples" Proc. Amer. Math. Soc. , 90 (1984) pp. 405–406 MR728357
[a15] N. Salinas, A. Sheu, H. Upmeier, "Toeplitz operators on pseudoconvex domains and foliation $C ^ { * }$-algebras" Ann. of Math. , 130 (1989) pp. 531–565 MR1025166
[a16] N. Salinas, "The $\overline { \partial }$-formalism and the $C ^ { * }$-algebra of the Bergman $n$-tuple" J. Oper. Th. , 22 (1989) pp. 325–343 MR1043731
[a17] J.L. Taylor, "A joint spectrum for several commuting operators" J. Funct. Anal. , 6 (1970) pp. 172–191 MR0268706 Zbl 0233.47024
[a18] J.L. Taylor, "The analytic functional calculus for several commuting operators" Acta Math. , 125 (1970) pp. 1–48 MR0271741 Zbl 0233.47025
[a19] H. Upmeier, "Toeplitz $C ^ { * }$-algebras on bounded symmetric domains" Ann. of Math. , 119 (1984) pp. 549–576 MR744863
[a20] F.-H. Vasilescu, "Analytic functional calculus and spectral decompositions" , Reidel (1982) MR0690957 Zbl 0495.47013
[a21] U. Venugopalkrishna, "Fredholm operators associated with strongly pseudoconvex domains in $\mathbf{C} ^ { n }$" J. Funct. Anal. , 9 (1972) pp. 349–373 MR0315502 Zbl 0241.47023
How to Cite This Entry:
Taylor joint spectrum. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Taylor_joint_spectrum&oldid=14902
This article was adapted from an original article by Raúl E. Curto (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article