Namespaces
Variants
Actions

Difference between revisions of "Tangent"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (dots)
 
(2 intermediate revisions by the same user not shown)
Line 1: Line 1:
 +
{{TEX|done}}
 
The trigonometric function
 
The trigonometric function
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092090/t0920901.png" /></td> </tr></table>
+
$$y=\tan x=\frac{\sin x}{\cos x};$$
  
another notation is: tg. Its domain of definition is the entire number axis with the exception of the points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092090/t0920902.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092090/t0920903.png" />. The tangent is an unbounded, odd and periodic (with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092090/t0920904.png" /> as the smallest positive period) function. The tangent and the [[Cotangent|cotangent]] are connected by the relation
+
another notation is: tg. Its domain of definition is the entire number axis with the exception of the points $\pi/2=n\pi$, $n=\pm1,\pm2,\dots$. The tangent is an unbounded, odd and periodic (with $\pi$ as the smallest positive period) function. The tangent and the [[Cotangent|cotangent]] are connected by the relation
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092090/t0920905.png" /></td> </tr></table>
+
$$\tan x=\frac{1}{\operatorname{cotan}x}$$
  
 
The inverse function to the tangent is called the arctangent.
 
The inverse function to the tangent is called the arctangent.
Line 11: Line 12:
 
The derivative of the tangent is:
 
The derivative of the tangent is:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092090/t0920906.png" /></td> </tr></table>
+
$$(\tan x)'=\frac{1}{\cos^2x}.$$
  
 
The indefinite integral of the tangent is:
 
The indefinite integral of the tangent is:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092090/t0920907.png" /></td> </tr></table>
+
$$\int\tan x\,dx=-\ln|{\cos x}|+c.$$
  
 
The tangent has a series expansion:
 
The tangent has a series expansion:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092090/t0920908.png" /></td> </tr></table>
+
$$\tan x=x+\frac{x^3}{3}+\frac{2x^5}{15}+\frac{17x^7}{315}+\dotsb,\quad|x|<\frac\pi2.$$
  
The tangent of a complex argument <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092090/t0920909.png" /> is a meromorphic function with zeros at the points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092090/t09209010.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092090/t09209011.png" />.
+
The tangent of a complex argument $z$ is a meromorphic function with zeros at the points $z=k\pi$, where $k=0,\pm1,\pm2,\dots$.
  
  
Line 28: Line 29:
 
The general term in the series expansion of the tangent is:
 
The general term in the series expansion of the tangent is:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092090/t09209012.png" /></td> </tr></table>
+
$$\frac{2^{2n}(2^{2n}-1)|B_{2n}|}{(2n)!}x^{2n-1},$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092090/t09209013.png" /> are the [[Bernoulli numbers|Bernoulli numbers]].
+
where $B_{2n}$ are the [[Bernoulli numbers|Bernoulli numbers]].
  
 
See also [[Trigonometric functions|Trigonometric functions]].
 
See also [[Trigonometric functions|Trigonometric functions]].
Line 36: Line 37:
 
The addition formula of the tangent is:
 
The addition formula of the tangent is:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092090/t09209014.png" /></td> </tr></table>
+
$$\tan(x_1+x_2)=\frac{\tan x_1+\tan x_2}{1-\tan x_1\tan x_2}.$$
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  M. Abramowitz,  I.A. Stegun,  "Handbook of mathematical functions" , Dover, reprint  (1965)  pp. 71ff</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  M. Abramowitz,  I.A. Stegun,  "Handbook of mathematical functions" , Dover, reprint  (1965)  pp. 71ff</TD></TR></table>

Latest revision as of 14:16, 14 February 2020

The trigonometric function

$$y=\tan x=\frac{\sin x}{\cos x};$$

another notation is: tg. Its domain of definition is the entire number axis with the exception of the points $\pi/2=n\pi$, $n=\pm1,\pm2,\dots$. The tangent is an unbounded, odd and periodic (with $\pi$ as the smallest positive period) function. The tangent and the cotangent are connected by the relation

$$\tan x=\frac{1}{\operatorname{cotan}x}$$

The inverse function to the tangent is called the arctangent.

The derivative of the tangent is:

$$(\tan x)'=\frac{1}{\cos^2x}.$$

The indefinite integral of the tangent is:

$$\int\tan x\,dx=-\ln|{\cos x}|+c.$$

The tangent has a series expansion:

$$\tan x=x+\frac{x^3}{3}+\frac{2x^5}{15}+\frac{17x^7}{315}+\dotsb,\quad|x|<\frac\pi2.$$

The tangent of a complex argument $z$ is a meromorphic function with zeros at the points $z=k\pi$, where $k=0,\pm1,\pm2,\dots$.


Comments

The general term in the series expansion of the tangent is:

$$\frac{2^{2n}(2^{2n}-1)|B_{2n}|}{(2n)!}x^{2n-1},$$

where $B_{2n}$ are the Bernoulli numbers.

See also Trigonometric functions.

The addition formula of the tangent is:

$$\tan(x_1+x_2)=\frac{\tan x_1+\tan x_2}{1-\tan x_1\tan x_2}.$$

References

[a1] M. Abramowitz, I.A. Stegun, "Handbook of mathematical functions" , Dover, reprint (1965) pp. 71ff
How to Cite This Entry:
Tangent. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Tangent&oldid=15300
This article was adapted from an original article by Yu.A. Gor'kov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article