Namespaces
Variants
Actions

Symplectic structure

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.


An infinitesimal structure of order one on an even-dimensional smooth orientable manifold $ M ^ {2n} $ which is defined by a non-degenerate $ 2 $- form $ \Phi $ on $ M ^ {2n} $. Every tangent space $ T _ {x} ( M ^ {2n} ) $ has the structure of a symplectic space with skew-symmetric scalar product $ \Phi ( X, Y) $. All frames tangent to $ M ^ {2n} $ adapted to the symplectic structure (that is, frames with respect to which $ \Phi $ has the canonical form $ \Phi = 2 \sum _ {\alpha = 1 } ^ {n} \omega ^ \alpha \wedge \omega ^ {n + \alpha } $) form a principal fibre bundle over $ M ^ {2n} $ whose structure group is the symplectic group $ \mathop{\rm Sp} ( n) $. Specifying a symplectic structure on $ M ^ {2n} $ is equivalent to specifying an $ \mathop{\rm Sp} ( n) $- structure on $ M ^ {2n} $( cf. $ G $- structure).

Given a symplectic structure on $ M ^ {2n} $, there is an isomorphism between the modules of vector fields and $ 1 $- forms on $ M ^ {2n} $, under which a vector field $ X $ is associated with a $ 1 $- form, $ \omega _ {X} : Y \mapsto \Phi ( X, Y) $. In this context, the image of the Lie bracket $ [ X, Y] $ is called the Poisson bracket $ [ \omega _ {X} , \omega _ {Y} ] $. In particular, when $ \omega _ {X} $ and $ \omega _ {Y} $ are exact differentials, one obtains the concept of the Poisson bracket of two functions on $ M ^ {2n} $, which generalizes the corresponding classical concept.

A symplectic structure is also called an almost-Hamiltonian structure, and if $ \Phi $ is closed, i.e. $ d \Phi = 0 $, a Hamiltonian structure, though the condition $ d \Phi = 0 $ is sometimes included in the definition of a symplectic structure. These structures find application in global analytical mechanics, since the cotangent bundle $ T ^ {*} ( M) $ of any smooth manifold $ M $ admits a canonical Hamiltonian structure. It is defined by the form $ \Phi = d \theta $, where the $ 1 $- form $ \theta $ on $ T ^ {*} ( M) $, called the Liouville form, is given by: $ \theta _ {u} ( X _ {u} ) = u ( \pi _ {*} X _ {u} ) $ for any tangent vector $ X _ {u} $ at the point $ u \in T ^ {*} ( M) $, where $ \pi $ is the projection $ T ^ {*} ( M) \rightarrow M $. If one chooses local coordinates $ x ^ {1} \dots x ^ {n} $ on $ M $, and $ u = y _ {i} ( u) dx _ {\pi ( u) } ^ {i} $, then $ \theta = y _ {i} dx ^ {i} $, so that $ \Phi = dy _ {i} \wedge dx ^ {i} $. In classical mechanics $ M $ is interpreted as the configuration space and $ T ^ {*} ( M) $ as the phase space.

A vector field $ X $ on a manifold $ M ^ {2n} $ with a Hamiltonian structure is called a Hamiltonian vector field (or a Hamiltonian system) if the $ 1 $- form $ \omega _ {X} $ is closed. If, in addition, it is exact, that is, $ \omega _ {X} = - dH $, then $ H $ is called a Hamiltonian on $ M ^ {2n} $ and is a generalization of the corresponding classical concept.

References

[1] S. Sternberg, "Lectures on differential geometry" , Prentice-Hall (1964)
[2] C. Godbillon, "Géométrie différentielle et mécanique analytique" , Hermann (1969)

Comments

Mostly, for a symplectic structure on a manifold the defining $ 2 $- form $ \Phi $ is required to be closed (cf. [a1], p. 176, [a4], p. 36ff). If $ \Phi $ is not necessarily closed, one speaks of an almost-symplectic structure.

Let $ \Phi ( \omega ) $ denote the vector field on a symplectic manifold $ M $ that corresponds to the $ 1 $- form $ \omega $. Then the Poisson bracket on $ C ^ \infty ( M) $ is defined by

$$ \{ f, g \} = \Phi ( \phi ( df), \phi ( dg)) . $$

This turns $ C ^ \infty ( M) $ into a Lie algebra which satisfies the Leibniz property

$$ \tag{* } \{ f, gh \} = \{ f, g \} h + g \{ f, h \} . $$

More generally, an algebra $ A $ which has an extra Lie bracket $ \{ , \} $ so that (*) is satisfied is called a Poisson algebra. A smooth manifold $ M $ with a Poisson algebra structure on $ C ^ \infty ( M) $ is called a Poisson manifold, [a4], p. 107ff.

References

[a1] R. Abraham, J.E. Marsden, "Foundations of mechanics" , Benjamin/Cummings (1978)
[a2] W. Klingenberg, "Riemannian geometry" , de Gruyter (1982) (Translated from German)
[a3] J.M. Souriau, "Structures des systèmes dynamiques" , Dunod (1969)
[a4] P. Libermann, C.-M. Marle, "Symplectic geometry and analytical mechanics" , Reidel (1987) (Translated from French)
[a5] V.I. Arnol'd, "Mathematical methods of classical mechanics" , Springer (1978) (Translated from Russian)
[a6] V.I. [V.I. Arnol'd] Arnold, A.B. [A.B. Givent'al] Giventhal, "Symplectic geometry" , Dynamical Systems , IV , Springer (1990) (Translated from Russian)
[a7] A. Crumeyrolle (ed.) J Grifone (ed.) , Symplectic geometry , Pitman (1983)
How to Cite This Entry:
Symplectic structure. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Symplectic_structure&oldid=48935
This article was adapted from an original article by Ü. Lumiste (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article