Namespaces
Variants
Actions

Difference between revisions of "Symplectic group"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex,MR,ZBL,MSC, refs)
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
One of the classical groups, defined as the group of automorphisms of a skew-symmetric bilinear form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091820/s0918201.png" /> on a left <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091820/s0918202.png" />-module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091820/s0918203.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091820/s0918204.png" /> is a commutative ring (cf. [[Classical group|Classical group]]). In the case when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091820/s0918205.png" /> and the matrix of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091820/s0918206.png" /> with respect to the canonical basis <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091820/s0918207.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091820/s0918208.png" /> has the form
+
{{MSC|20}}
 +
{{TEX|done}}
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091820/s0918209.png" /></td> </tr></table>
+
One of the classical groups, defined as the group of automorphisms of a skew-symmetric bilinear form $\Phi$ on a left $K$-module $E$, where $K$ is a commutative ring (cf.
 +
[[Classical group|Classical group]]). In the case when $E=K^{2m}$ and the matrix of $\Phi$ with respect to the canonical basis $\{e_i\}$ of $E$ has the form
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091820/s09182010.png" /> is the identity matrix of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091820/s09182011.png" />, the corresponding symplectic group is called the symplectic group of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091820/s09182012.png" /> variables over the ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091820/s09182013.png" /> and is denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091820/s09182014.png" /> or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091820/s09182015.png" />. The matrix of any automorphism in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091820/s09182016.png" /> with respect to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091820/s09182017.png" /> is called a symplectic matrix.
+
$$J_m = \begin{pmatrix}0 & I_m\\ -I_m & 0\end{pmatrix},$$
 +
where $I_m$ is the identity matrix of order $m$, the corresponding symplectic group is called the symplectic group of $2m$ variables over the ring $K$ and is denoted by $\def\Sp{ {\rm Sp}}\Sp(m,K)$ or $\Sp_{2m}(K)$. The matrix of any automorphism in $\Sp_{2m}(K)$ with respect to $\{e_i\}$ is called a symplectic matrix.
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091820/s09182018.png" /> be a field and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091820/s09182019.png" /> a non-degenerate skew-symmetric bilinear form on an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091820/s09182020.png" />-dimensional vector space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091820/s09182021.png" /> over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091820/s09182022.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091820/s09182023.png" /> is even, then the symplectic group associated with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091820/s09182024.png" /> is isomorphic to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091820/s09182025.png" /> and is generated by all linear transformations of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091820/s09182026.png" /> of the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091820/s09182027.png" />, given by
+
Let $K$ be a field and $\Phi$ a non-degenerate skew-symmetric bilinear form on an $n$-dimensional vector space $E$ over $K$. If $n$ is even, then the symplectic group associated with $\Phi$ is isomorphic to $\Sp_{n}(K)$ and is generated by all linear transformations of $E$ of the form $\def\a{\alpha}\def\s{\sigma}\s_{e,\a}$, given by
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091820/s09182028.png" /></td> </tr></table>
+
$$x\mapsto \s_{e,\a}(x) = x+\a\Phi(e,x)e,$$
 +
where $e\in E$, $\a\in K$. Linear transformations of the form
 +
$\s_{e,\a}$ are called symplectic transvections, or translations in
 +
the direction of the line $Ke$. The centre $Z$ of $\Sp_{n}(K)$
 +
consists of the matrices $I_n$ and $-I_n$ if ${\rm char}\; K \ne 2$, and $Z=\{I_n\}$ if ${\rm char}\; K = 2$. The quotient group $\Sp_{n}(K)/Z$ is called the projective symplectic group and is denoted by $\def\PSp{ {\rm PSp}}\PSp_{n}(K)$. All projective symplectic groups are simple, except
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091820/s09182029.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091820/s09182030.png" />. Linear transformations of the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091820/s09182031.png" /> are called symplectic transvections, or translations in the direction of the line <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091820/s09182032.png" />. The centre <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091820/s09182033.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091820/s09182034.png" /> consists of the matrices <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091820/s09182035.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091820/s09182036.png" /> if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091820/s09182037.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091820/s09182038.png" /> if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091820/s09182039.png" />. The quotient group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091820/s09182040.png" /> is called the projective symplectic group and is denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091820/s09182041.png" />. All projective symplectic groups are simple, except
+
$$\PSp_2(\F_2) = \Sp_2(\F_2),\quad \PSp_4(\F_2) = \Sp_4(\F_2) \textrm{ and }\PSp_2(\F_3)$$
 +
(here $\F_q$ denotes the field of $q$ elements) and these are isomorphic to the symmetric groups $S_3$, $S_6$ (cf.
 +
[[Symmetric group|Symmetric group]]) and the
 +
[[Alternating group|alternating group]] $A_4$, respectively. The order of $\Sp_{2m}(\F_q)$ is
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091820/s09182042.png" /></td> </tr></table>
+
$$q^{m^2}(q^2-1)\cdots(q^{2m-2}-1)(q^{2m}-1).$$
 +
The symplectic group $\Sp_2(K)$ coincides with the
 +
[[Special linear group|special linear group]] ${\rm SL}_2(K)$. If ${\rm char}\; K \ne 2$, $\PSp_4(K)$ is isomorphic to the quotient group of $\def\Om{\Omega}\Om_5(K,f)$ by its centre, where $\Om_5(K,f)$ is the commutator subgroup of (index 2 in) the orthogonal group associated with a symmetric bilinear form $f$ in five variables.
  
(here <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091820/s09182043.png" /> denotes the field of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091820/s09182044.png" /> elements) and these are isomorphic to the symmetric groups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091820/s09182045.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091820/s09182046.png" /> (cf. [[Symmetric group|Symmetric group]]) and the [[Alternating group|alternating group]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091820/s09182047.png" />, respectively. The order of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091820/s09182048.png" /> is
+
Except when $m=2$ and ${\rm char}\; K = 2$, every automorphism $\def\phi{\varphi}\Phi$ of $\Sp_{2m}(K)$ can be written as
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091820/s09182049.png" /></td> </tr></table>
+
$$\phi(g)=h_1h_2g^\tau h_2^{-1}h_1^{-1},$$
 +
where $\tau$ is an automorphism of the field $K$, $h_1\in\Sp_{2m}(K)$ and $h_2$ is a linear transformation of the space $E$, represented on the basis $\{e_i\}$ by a matrix of the form
  
The symplectic group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091820/s09182050.png" /> coincides with the [[Special linear group|special linear group]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091820/s09182051.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091820/s09182052.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091820/s09182053.png" /> is isomorphic to the quotient group of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091820/s09182054.png" /> by its centre, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091820/s09182055.png" /> is the commutator subgroup of (index 2 in) the orthogonal group associated with a symmetric bilinear form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091820/s09182056.png" /> in five variables.
+
$$\begin{pmatrix}I_m & 0 \\ 0 & \beta I_m\end{pmatrix}$$
 +
($\beta$ is a non-zero element of $K$).
  
Except when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091820/s09182057.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091820/s09182058.png" />, every automorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091820/s09182059.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091820/s09182060.png" /> can be written as
+
$\Sp_{2m}(K)$ coincides with the group of $K$-points of the
 +
[[Linear algebraic group|linear algebraic group]] $\Sp_{2m}$ defined by the equation $A^tJ_m A = J_m$. This algebraic group, also called a symplectic group, is a simple simply-connected linear algebraic group of type $C_m$ of dimension $2m^2+m$.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091820/s09182061.png" /></td> </tr></table>
+
In the case when $K=\C$ or $\R$, $\Sp_{2m}(K)$ is a connected simple complex (respectively, real) Lie group. $\Sp_{2m}(\R)$ is one of the real forms of the complex symplectic group $\Sp_{2m}(\C)$. The other real forms of this group are also sometimes called symplectic groups. These are the subgroups $\Sp(p,q)$ of $\Sp_{2m}(\C)$, $p,q\ge 0$, $p+q=m$, consisting of those elements of $\Sp_{2m}(\C)$ that preserve the Hermitian form
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091820/s09182062.png" /> is an automorphism of the field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091820/s09182063.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091820/s09182064.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091820/s09182065.png" /> is a linear transformation of the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091820/s09182066.png" />, represented on the basis <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091820/s09182067.png" /> by a matrix of the form
+
$$\def\e{\epsilon}\sum_{i=1}^{2m} \e_i z_i\bar z_i,$$
 
+
where $\e_i=1$ for $1\le i\le p$ and $m+1\le i \le m+p$, and $\e_i=-1$
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091820/s09182068.png" /></td> </tr></table>
+
otherwise. The group $\Sp(0,m)$ is a compact real form of the complex
 
+
symplectic group $\Sp_{2m}(\C)$. The symplectic group $\Sp(p,q)$ is
(<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091820/s09182069.png" /> is a non-zero element of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091820/s09182070.png" />).
+
isomorphic to the group of all linear transformations of the right
 
+
vector space $\def\H{ {\mathbb H}}\H^m$ of dimension $m=p+q$ over the division ring $\H$ of quaternions that preserve the quaternionic Hermitian form of index $\min(p,q)$, that is, the form
<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091820/s09182071.png" /> coincides with the group of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091820/s09182072.png" />-points of the [[Linear algebraic group|linear algebraic group]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091820/s09182073.png" /> defined by the equation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091820/s09182074.png" />. This algebraic group, also called a symplectic group, is a simple simply-connected linear algebraic group of type <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091820/s09182075.png" /> of dimension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091820/s09182076.png" />.
 
 
 
In the case when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091820/s09182077.png" /> or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091820/s09182078.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091820/s09182079.png" /> is a connected simple complex (respectively, real) Lie group. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091820/s09182080.png" /> is one of the real forms of the complex symplectic group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091820/s09182081.png" />. The other real forms of this group are also sometimes called symplectic groups. These are the subgroups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091820/s09182082.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091820/s09182083.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091820/s09182084.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091820/s09182085.png" />, consisting of those elements of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091820/s09182086.png" /> that preserve the Hermitian form
 
 
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091820/s09182087.png" /></td> </tr></table>
 
 
 
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091820/s09182088.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091820/s09182089.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091820/s09182090.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091820/s09182091.png" /> otherwise. The group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091820/s09182092.png" /> is a compact real form of the complex symplectic group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091820/s09182093.png" />. The symplectic group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091820/s09182094.png" /> is isomorphic to the group of all linear transformations of the right vector space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091820/s09182095.png" /> of dimension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091820/s09182096.png" /> over the division ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091820/s09182097.png" /> of quaternions that preserve the quaternionic Hermitian form of index <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091820/s09182098.png" />, that is, the form
 
 
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091820/s09182099.png" /></td> </tr></table>
 
  
 +
$$(x,y) = \sum_{i=1}^p x_i\bar y_i - \sum_{i=p+1}^m x_i\bar y_i,$$
 
where
 
where
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091820/s091820100.png" /></td> </tr></table>
+
$$x=(x_1,\dots,x_m,\ y = (y_1,\dots,y_m) \in \H^m,$$
 
 
 
and the bar denotes conjugation of quaternions.
 
and the bar denotes conjugation of quaternions.
  
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  E. Artin,  "Geometric algebra" , Interscience  (1957)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  N. Bourbaki,  "Algebra" , ''Elements of mathematics'' , '''1''' , Addison-Wesley  (1973)  (Translated from French)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  J.A. Dieudonné,  "La géométrie des groups classiques" , Springer  (1955)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  S. Helgason,  "Differential geometry and symmetric spaces" , Acad. Press  (1962)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  C. Chevalley,  "Theory of Lie groups" , '''1''' , Princeton Univ. Press  (1946)</TD></TR></table>
 
  
 +
====Comments====
 +
$\Sp_{2m}(\C)$ is also simply connected. But $\Sp_{2m}(\R)$ has the homotopy type of $S^1\times {\rm SU}_n$, so that $\pi_1(\Sp_{2m}(\R)) = \Z$. Here $S^1$ is the circle and ${\rm SU}_n$ is the special unitary group. The unitary symplectic group ${\rm USp}_{2m}(\C)$ is the intersection (in ${\rm GL}_{2m}(\C)$) of the
 +
[[Unitary group|unitary group]] ${\rm U}_{2m}$ and $\Sp_{2m}(\C)$. Topologically, $\Sp_{2m}(\C) \simeq {\rm USp}_{2m}(\C)\times \R^{2n^2+n}.$.
  
 +
In Hamiltonian mechanics (cf.
 +
[[Hamilton equations|Hamilton equations]]) the phase space is a symplectic manifold, a manifold $M$ provided with a symplectic form (a closed differential form $\omega$ of degree $2$ which is non-degenerate at each point). If $M=T^* Q$, the cotangent bundle of a configuration space $Q$, with local coordinates $(q_1,\dots,q_n;p1,\dots,p_n)$, then the symplectic form $\sum_{j=1}^n dp_j\wedge dq_j$ is called canonical. The flow of a Hamiltonian system leaves the symplectic form invariant. As a consequence, its tangent mapping at a fixed point belongs to the symplectic group of the tangent space.
  
====Comments====
+
Cf.
<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091820/s091820101.png" /> is also simply connected. But <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091820/s091820102.png" /> has the homotopy type of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091820/s091820103.png" />, so that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091820/s091820104.png" />. Here <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091820/s091820105.png" /> is the circle and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091820/s091820106.png" /> is the special unitary group. The unitary symplectic group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091820/s091820107.png" /> is the intersection (in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091820/s091820108.png" />) of the [[Unitary group|unitary group]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091820/s091820109.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091820/s091820110.png" />. Topologically, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091820/s091820111.png" />.
+
[[Symplectic homogeneous space|Symplectic homogeneous space]];
 +
[[Symplectic structure|Symplectic structure]].
  
In Hamiltonian mechanics (cf. [[Hamilton equations|Hamilton equations]]) the phase space is a symplectic manifold, a manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091820/s091820112.png" /> provided with a symplectic form (a closed differential form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091820/s091820113.png" /> of degree <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091820/s091820114.png" /> which is non-degenerate at each point). If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091820/s091820115.png" />, the cotangent bundle of a configuration space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091820/s091820116.png" />, with local coordinates <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091820/s091820117.png" />, then the symplectic form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091820/s091820118.png" /> is called canonical. The flow of a Hamiltonian system leaves the symplectic form invariant. As a consequence, its tangent mapping at a fixed point belongs to the symplectic group of the tangent space.
 
  
Cf. [[Symplectic homogeneous space|Symplectic homogeneous space]]; [[Symplectic structure|Symplectic structure]].
+
====References====
 +
{|
 +
|-
 +
|valign="top"|{{Ref|Ar}}||valign="top"| E. Artin, "Geometric algebra", Interscience (1957) {{MR|1529733}} {{MR|0082463}} {{ZBL|0077.02101}}
 +
|-
 +
|valign="top"|{{Ref|Bo}}||valign="top"| N. Bourbaki, "Algebra", ''Elements of  mathematics'', '''1''', Addison-Wesley (1973) (Translated from  French)  {{MR|0354207}}  {{ZBL|0281.00006}}
 +
|-
 +
|valign="top"|{{Ref|Ch}}||valign="top"| C. Chevalley, "Theory of Lie groups", '''1''', Princeton Univ. Press (1946) {{MR|0082628}} {{MR|0015396}} {{ZBL|0063.00842}}
 +
|-
 +
|valign="top"|{{Ref|Di}}||valign="top"| J.A. Dieudonné, "La géométrie des groups classiques", Springer (1955) {{MR|}} {{ZBL|0221.20056}}
 +
|-
 +
|valign="top"|{{Ref|He}}||valign="top"| S. Helgason, "Differential geometry and symmetric spaces", Acad. Press (1962) {{MR|0145455}} {{ZBL|0111.18101}}
 +
|-
 +
|}

Latest revision as of 14:22, 3 November 2013

2020 Mathematics Subject Classification: Primary: 20-XX [MSN][ZBL]

One of the classical groups, defined as the group of automorphisms of a skew-symmetric bilinear form $\Phi$ on a left $K$-module $E$, where $K$ is a commutative ring (cf. Classical group). In the case when $E=K^{2m}$ and the matrix of $\Phi$ with respect to the canonical basis $\{e_i\}$ of $E$ has the form

$$J_m = \begin{pmatrix}0 & I_m\\ -I_m & 0\end{pmatrix},$$ where $I_m$ is the identity matrix of order $m$, the corresponding symplectic group is called the symplectic group of $2m$ variables over the ring $K$ and is denoted by $\def\Sp{ {\rm Sp}}\Sp(m,K)$ or $\Sp_{2m}(K)$. The matrix of any automorphism in $\Sp_{2m}(K)$ with respect to $\{e_i\}$ is called a symplectic matrix.

Let $K$ be a field and $\Phi$ a non-degenerate skew-symmetric bilinear form on an $n$-dimensional vector space $E$ over $K$. If $n$ is even, then the symplectic group associated with $\Phi$ is isomorphic to $\Sp_{n}(K)$ and is generated by all linear transformations of $E$ of the form $\def\a{\alpha}\def\s{\sigma}\s_{e,\a}$, given by

$$x\mapsto \s_{e,\a}(x) = x+\a\Phi(e,x)e,$$ where $e\in E$, $\a\in K$. Linear transformations of the form $\s_{e,\a}$ are called symplectic transvections, or translations in the direction of the line $Ke$. The centre $Z$ of $\Sp_{n}(K)$ consists of the matrices $I_n$ and $-I_n$ if ${\rm char}\; K \ne 2$, and $Z=\{I_n\}$ if ${\rm char}\; K = 2$. The quotient group $\Sp_{n}(K)/Z$ is called the projective symplectic group and is denoted by $\def\PSp{ {\rm PSp}}\PSp_{n}(K)$. All projective symplectic groups are simple, except

$$\PSp_2(\F_2) = \Sp_2(\F_2),\quad \PSp_4(\F_2) = \Sp_4(\F_2) \textrm{ and }\PSp_2(\F_3)$$ (here $\F_q$ denotes the field of $q$ elements) and these are isomorphic to the symmetric groups $S_3$, $S_6$ (cf. Symmetric group) and the alternating group $A_4$, respectively. The order of $\Sp_{2m}(\F_q)$ is

$$q^{m^2}(q^2-1)\cdots(q^{2m-2}-1)(q^{2m}-1).$$ The symplectic group $\Sp_2(K)$ coincides with the special linear group ${\rm SL}_2(K)$. If ${\rm char}\; K \ne 2$, $\PSp_4(K)$ is isomorphic to the quotient group of $\def\Om{\Omega}\Om_5(K,f)$ by its centre, where $\Om_5(K,f)$ is the commutator subgroup of (index 2 in) the orthogonal group associated with a symmetric bilinear form $f$ in five variables.

Except when $m=2$ and ${\rm char}\; K = 2$, every automorphism $\def\phi{\varphi}\Phi$ of $\Sp_{2m}(K)$ can be written as

$$\phi(g)=h_1h_2g^\tau h_2^{-1}h_1^{-1},$$ where $\tau$ is an automorphism of the field $K$, $h_1\in\Sp_{2m}(K)$ and $h_2$ is a linear transformation of the space $E$, represented on the basis $\{e_i\}$ by a matrix of the form

$$\begin{pmatrix}I_m & 0 \\ 0 & \beta I_m\end{pmatrix}$$ ($\beta$ is a non-zero element of $K$).

$\Sp_{2m}(K)$ coincides with the group of $K$-points of the linear algebraic group $\Sp_{2m}$ defined by the equation $A^tJ_m A = J_m$. This algebraic group, also called a symplectic group, is a simple simply-connected linear algebraic group of type $C_m$ of dimension $2m^2+m$.

In the case when $K=\C$ or $\R$, $\Sp_{2m}(K)$ is a connected simple complex (respectively, real) Lie group. $\Sp_{2m}(\R)$ is one of the real forms of the complex symplectic group $\Sp_{2m}(\C)$. The other real forms of this group are also sometimes called symplectic groups. These are the subgroups $\Sp(p,q)$ of $\Sp_{2m}(\C)$, $p,q\ge 0$, $p+q=m$, consisting of those elements of $\Sp_{2m}(\C)$ that preserve the Hermitian form

$$\def\e{\epsilon}\sum_{i=1}^{2m} \e_i z_i\bar z_i,$$ where $\e_i=1$ for $1\le i\le p$ and $m+1\le i \le m+p$, and $\e_i=-1$ otherwise. The group $\Sp(0,m)$ is a compact real form of the complex symplectic group $\Sp_{2m}(\C)$. The symplectic group $\Sp(p,q)$ is isomorphic to the group of all linear transformations of the right vector space $\def\H{ {\mathbb H}}\H^m$ of dimension $m=p+q$ over the division ring $\H$ of quaternions that preserve the quaternionic Hermitian form of index $\min(p,q)$, that is, the form

$$(x,y) = \sum_{i=1}^p x_i\bar y_i - \sum_{i=p+1}^m x_i\bar y_i,$$ where

$$x=(x_1,\dots,x_m,\ y = (y_1,\dots,y_m) \in \H^m,$$ and the bar denotes conjugation of quaternions.


Comments

$\Sp_{2m}(\C)$ is also simply connected. But $\Sp_{2m}(\R)$ has the homotopy type of $S^1\times {\rm SU}_n$, so that $\pi_1(\Sp_{2m}(\R)) = \Z$. Here $S^1$ is the circle and ${\rm SU}_n$ is the special unitary group. The unitary symplectic group ${\rm USp}_{2m}(\C)$ is the intersection (in ${\rm GL}_{2m}(\C)$) of the unitary group ${\rm U}_{2m}$ and $\Sp_{2m}(\C)$. Topologically, $\Sp_{2m}(\C) \simeq {\rm USp}_{2m}(\C)\times \R^{2n^2+n}.$.

In Hamiltonian mechanics (cf. Hamilton equations) the phase space is a symplectic manifold, a manifold $M$ provided with a symplectic form (a closed differential form $\omega$ of degree $2$ which is non-degenerate at each point). If $M=T^* Q$, the cotangent bundle of a configuration space $Q$, with local coordinates $(q_1,\dots,q_n;p1,\dots,p_n)$, then the symplectic form $\sum_{j=1}^n dp_j\wedge dq_j$ is called canonical. The flow of a Hamiltonian system leaves the symplectic form invariant. As a consequence, its tangent mapping at a fixed point belongs to the symplectic group of the tangent space.

Cf. Symplectic homogeneous space; Symplectic structure.


References

[Ar] E. Artin, "Geometric algebra", Interscience (1957) MR1529733 MR0082463 Zbl 0077.02101
[Bo] N. Bourbaki, "Algebra", Elements of mathematics, 1, Addison-Wesley (1973) (Translated from French) MR0354207 Zbl 0281.00006
[Ch] C. Chevalley, "Theory of Lie groups", 1, Princeton Univ. Press (1946) MR0082628 MR0015396 Zbl 0063.00842
[Di] J.A. Dieudonné, "La géométrie des groups classiques", Springer (1955) Zbl 0221.20056
[He] S. Helgason, "Differential geometry and symmetric spaces", Acad. Press (1962) MR0145455 Zbl 0111.18101
How to Cite This Entry:
Symplectic group. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Symplectic_group&oldid=17707
This article was adapted from an original article by V.L. Popov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article