Namespaces
Variants
Actions

Support of a generalized function

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

The set of those (and only those) points such that in any neighbourhood of them the generalized function does not vanish. A generalized function $f$ in $\mathcal D^\prime(O)$ vanishes in an open set $O^\prime \subset O$ if $(f,\phi) = 0$ for all $\phi \in \mathcal D(O^\prime)$. Using a partition of unity it can be proved that if a generalized function $f$ in $\mathcal D^\prime(O)$ vanishes in some neighbourhood $U_y \subset O$ for each point $y \in O$, then $f$ vanishes in $O$. The union of all neighbourhoods in which $f$ vanishes is called the zero set of $f$ and is denoted by $O_f$. The support of $f$, denoted by $\mathop{\mathrm{supp}} f$, is the complement of $O_f$ in $O$, that is, $\mathop{\mathrm{supp}} f = O \setminus O_f$ is a closed set in $O$. If $f$ is a continuous function in $O$, then an equivalent definition of the support of $f$ is the following: $\mathop{\mathrm{supp}} f$ is the closure in $O$ of the complement of the set of points at which $f$ vanishes (cf. Support of a function). For example, $\mathop{\mathrm{supp}} x = \mathbf{R}^1$, $\mathop{\mathrm{supp}} \delta = \{0\}$.

The singular support ($\mathop{\mathrm{sing}} \mathop{\mathrm{supp}}$) of a generalized function is the set of those (and only those) points such that in any neighbourhood of them the generalized function is not equal to a $C^\infty$-function. For example, $\mathop{\mathrm{sing}} \mathop{\mathrm{supp}} x = \emptyset$, $\mathop{\mathrm{sing}} \mathop{\mathrm{supp}} \delta = \{0\}$.


Comments

The notion of a zero set as used above is somewhat unusual and does not agree with the zero set of an ordinary function (not a generalized function) as the set of points where that function assumes the value zero. Of course, the statement "$f(x)=0$" has no meaning for generalized functions $f$.

A point $x_0$ in the support of a generalized function $f$ is called an essential point of $f$, cf. [a4].

References

[a1] L. Schwartz, "Théorie des distributions" , 1–2 , Hermann (1966)
[a2] L.V. Hörmander, "The analysis of linear partial differential operators" , 1 , Springer (1983) pp. §7.7
[a3] V.S. Vladimirov, Yu.N. Drozzinov, B.I. Zavialov, "Tauberian theory for generalized functions" , Kluwer (1988) (Translated from Russian)
[a4] I.M. Gel'fand, G.E. Shilov, "Generalized functions" , 1. Properties and operations , Acad. Press (1964) pp. 5 (Translated from Russian)
How to Cite This Entry:
Support of a generalized function. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Support_of_a_generalized_function&oldid=52508
This article was adapted from an original article by V.S. Vladimirov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article