Namespaces
Variants
Actions

Sum of divisors

From Encyclopedia of Mathematics
Revision as of 19:43, 26 December 2015 by Richard Pinch (talk | contribs) (link)
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

2020 Mathematics Subject Classification: Primary: 11A25 Secondary: 11A51 [MSN][ZBL]

of a natural number $n$

The sum of the positive integers divisors of a natural number $n$, including $1$ and $n$: $$ \sigma(n) = \sum_{d | n} d \ . $$ More generally, the function $\sigma_k$ is defined as $$ \sigma_k(n) = \sum_{d | n} d^k \ . $$ so that $\sigma = \sigma_1$ and the number of divisors function $\tau = \sigma_0$.

These are multiplicative arithmetic functions with Dirichlet series $$ \sum_{n=1}^\infty \sigma_k(n) n^{-s} = \prod_p \left({(1-p^{-s})(1-p^{k-s}) }\right)^{-1} = \zeta(s) \zeta(s-k)\ . $$

The average order of $\sigma(n)$ is given by $$ \sum_{n \le x} \sigma(n) = \frac{\pi^2}{12} x^2 + O(x \log x) \ . $$

There are a number of well-known classes of number characterised by their divisor sums.

A perfect number $n$ is the sum of its aliquot divisors (those divisors other than $n$ itself), so $\sigma(n) = 2n$. The even perfect numbers are characterised in terms of Mersenne primes $P = 2^p-1$ as $n = 2^{p-1}.P$: it is not known if there are any odd perfect numbers. An almost perfect number $n$ similarly has the property that $\sigma(n) = 2n-1$: these include the powers of 2. A quasiperfect number is defined by $\sigma(n) = 2n+1$: it is not known if any exists. See also Descartes number.

References

  • Kishore, Masao. "On odd perfect, quasiperfect, and odd almost perfect numbers". Mathematics of Computation 36 (1981) 583–586. ISSN 0025-5718. Zbl 0472.10007
  • G. Tenenbaum, Introduction to Analytic and Probabilistic Number Theory, Cambridge Studies in Advanced Mathematics 46, Cambridge University Press (1995) ISBN 0-521-41261-7 Zbl 0831.11001
How to Cite This Entry:
Sum of divisors. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Sum_of_divisors&oldid=37103