Namespaces
Variants
Actions

Sullivan minimal model

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

2020 Mathematics Subject Classification: Primary: 57D99 Secondary: 55D9958A10 [MSN][ZBL]

The theory of minimal models began with the work of D. Quillen [Qu]. A simply-connected topological space $X$ (cf. also Simply-connected domain) is called rational if its homotopy groups are rational vector spaces (cf. also Homotopy group; Vector space). The rationalization functor associates to each simply-connected space $X$ a mapping $X \to X_0$, such that $X_0$ is rational and $\pi^*(f) \otimes \QQ$ is an isomorphism. The interest of this construction is that the homotopy category of rational spaces has an algebraic nature. More precisely, in [Qu], D. Quillen established an equivalence of homotopy categories between the homotopy category of simply-connected rational spaces and the homotopy category of connected differential graded Lie algebras (cf. also Lie algebra, graded).

In [Su], D. Sullivan associated to each space $X$ a commutative differential graded algebra (CDGA), $A_\text{PL}(X)$, which is linked to the cochain algebra $C^*(X; \QQ)$ by a chain of differential graded algebra quasi-isomorphisms (i.e. morphisms inducing isomorphisms in cohomology). This, in particular, gave a solution to Thom's problem of constructing commutative cochains over the rationals. The $A_{\text{PL}}$-functor together with its adjoint, the realization functor of a commutative differential graded algebra, induce an equivalence of homotopy categories between the homotopy category of simply-connected rational spaces with finite Betti numbers and the homotopy category of rational commutative differential graded algebras, $(A, d)$, such that $H^0(A, d) = \QQ$, $(A, d)=0$, and $\dim H^p(A, d) < \infty$ for each $p$.

The correspondence

\begin{array}{c} \text{comutative differential graded algebra}\\ \Updownarrow\\ \text{Spaces} \end{array}

behaves well with respect to fibrations and cofibrations (cf. also Fibration). Rational homotopy invariants of a space are most easily obtained by means of constructions in the category of commutative differential graded algebras. This procedure has been made very powerful with the Sullivan minimal models.

Let $(A, d)$ be a commutative differential graded algebra such that $H^0(A, d) = \QQ$, $H^1(A, d) = 0$, and $\dim H^p(A, d) < \infty$ for each $p$. There exists then a quasi-isomorphism of commutative differential graded algebras $\varphi : (\wedge V, d) \to (A, d)$, where $\wedge V$ denotes the free commutative algebra on the graded vector space of finite type $V$, and $d(V) \subset \wedge^{\ge 2} V$. The cochain algebra $(\wedge V, d)$ is called the Sullivan minimal model of $(A, d)$; it is unique up to isomorphism.

The Sullivan minimal model of $A_{\text{PL}}(X)$ is called the Sullivan minimal model of $X$. It satisfies $H^*(\wedge V, d) \cong H^*(X; \QQ)$ and $V^n \cong \Hom(\pi_n(X), \QQ)$. More generally, for each continuous mapping $f: X \to Y$, there is a commutative diagram

\begin{array}{ccccc} A_{\text{PL}}(Y) & \xrightarrow{A_\text{PL}(f)} & A_{\text{PL}}(X) \\ \big\uparrow \varphi & & \big\uparrow \psi \\ (\bigwedge V, d) & \xrightarrow{\ \ \ i\ \ \ } & (\bigwedge V \otimes \bigwedge W, D) & \xrightarrow{\ \ \ p\ \ \ } & (\bigwedge W, \overline D) \end{array}

where $\psi$ and $\varphi$ are quasi-isomorphisms, $d(V) \subset \wedge^{\ge 2} V$, $\overline D(W) \subset \wedge^{\ge 2} W$, and where $i$ and $p$ are the canonical injection and projection. In this case, the Grivel–Halperin–Thomas theorem asserts that $(\wedge W, \overline D)$ is a Sullivan minimal model for the homotopy fibre of $f$ [Ha2].

A key result in the theory is the so-called mapping theorem [FéHa]. Recall that the Lyusternik–Shnirel'man category of $X$ is the least integer $n$ such that $X$ can be covered by $n+1$ open sets each contractible in $X$ (cf. also Category (in the sense of Lyusternik–Shnirel'man)). If $f: X \to Y$ is a mapping between simply-connected spaces and if $\pi^*(f) \otimes \QQ$ is injective, then $\operatorname{cat}(X_0) \le \operatorname{cat}(Y_0)$. The Lyusternik–Shnirel'man category of $X_0$ can be computed directly from its Sullivan minimal model $(\wedge V, d)$. Indeed, consider the following commutative diagram:

\begin{array}{ccc} (\bigwedge V, d) & \xrightarrow{\ \ p \ \ } & (\bigwedge V / \bigwedge^{> n} V, d)\\ \big\| & & \big \uparrow \varphi\\ (\bigwedge V, d) & \xrightarrow{\ \ i \ \ } & (\bigwedge V \otimes \bigwedge W, D) \end{array}

where $p$ and $i$ denote the canonical projection and injection and $\varphi$ is a quasi-isomorphism. The category of $X_0$ is then the least integer $n$ such that $i$ admits a retraction [FéHa].

To obtain properties of simply-connected spaces with finite category, it is therefore sufficient to consider Sullivan minimal models $(\wedge V, d)$ with finite category. Using this procedure, Y. Félix, S. Halperin and J.-C. Thomas have obtained the following dichotomy theorem: Either $\pi^*(X) \otimes \QQ$ is finite-dimensional (the space is called elliptic), or else the sequence $\sum_{i=1}^N \dim \pi_i(X) \otimes \QQ$ has exponential growth (the space is thus called hyperbolic) [FéHaTh].

When $X$ is elliptic, the dimension of $H^*(X; \QQ)$ is finite, the Euler characteristic is non-negative and the rational cohomology algebra satisfies Poincaré duality [Ha].

The minimal model of $X$ contains all the rational homotopy invariants of $X$. For instance, the cochain algebra $(\wedge V^{\le m}, d)$ is a model for the $m$th Postnikov tower $X_0(m)$ of $X_0$ (cf. also Postnikov system), and the mapping $\widetilde{d\ } : V^{m+1} \to H^{m+1}(\wedge V^{\le m}, d)$ induced by $d$ is the dual of the $(m+1)$st $k$-invariant

$$k_{m+1} \in H^{m+1}(X_0(m), \pi_{m+1}(X_0)) = \Hom(H_{m+1}(X_0(m)), \pi_{m+1}(X_0)).$$

The quadratic part of the differential $d_1 : V \to \wedge^2 V$ is dual to the Whitehead product in $(\wedge V, d)$. More precisely, $(d_1 v; x, y) = (-1)^{k+n-1}(v, [x, y])$, $v \in V$, $x \in \pi(k(X)$, $y \in \pi_n(X)$.

References

[FéHa] Y. Félix, S. Halperin, "Rational LS category and its applications" Trans. Amer. Math. Soc., 273 (1982) pp. 1–37 MR0664027
[FéHaTh] Y. Félix, S. Halperin, J.C. Thomas, "Rational homotopy theory" MR1802847 Zbl 0961.55002 Zbl 0691.55001
[Ha] S. Halperin, "Finiteness in the minimal models of Sullivan" Trans. Amer. Math. Soc., 230 (1977) pp. 173–199 MR0461508 Zbl 0364.55014
[Ha2] S. Halperin, "Lectures on minimal models" Mémoire de la SMF, 9/10 (1983) MR0736299 MR0637558 Zbl 0536.55003 Zbl 0505.55014
[Qu] D. Quillen, "Rational homotopy theory" Ann. of Math., 90 (1969) pp. 205–295 MR0258031 Zbl 0191.53702
[Su] D. Sullivan, "Infinitesimal computations in topology" Publ. IHES, 47 (1977) pp. 269–331 MR0646078 Zbl 0374.57002
How to Cite This Entry:
Sullivan minimal model. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Sullivan_minimal_model&oldid=54765
This article was adapted from an original article by Yves Félix (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article