Namespaces
Variants
Actions

Difference between revisions of "Strong solution"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (MR/ZBL numbers added)
Line 23: Line 23:
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  J. Chazarain,  A. Piriou,  "Introduction à la théorie des équations aux dérivées partielles linéaires" , Gauthier-Villars  (1981)  pp. 223</TD></TR></table>
+
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  J. Chazarain,  A. Piriou,  "Introduction à la théorie des équations aux dérivées partielles linéaires" , Gauthier-Villars  (1981)  pp. 223 {{MR|0598467}} {{ZBL|0446.35001}} </TD></TR></table>

Revision as of 12:13, 27 September 2012

of a differential equation

in a domain

A locally integrable function that has locally integrable generalized derivatives of all orders (cf. Generalized derivative), and satisfies

almost-everywhere in .

The notion of a "strong solution" can also be introduced as follows. A function is called a strong solution of

if there are sequences of smooth (for example, ) functions , such that , and for each , where the convergence is taken in for any compact set . In these definitions, can be replaced by the class of functions whose -th powers are locally integrable. The class most often used is .

In the case of an elliptic equation

both notions of a strong solution coincide.


Comments

References

[a1] J. Chazarain, A. Piriou, "Introduction à la théorie des équations aux dérivées partielles linéaires" , Gauthier-Villars (1981) pp. 223 MR0598467 Zbl 0446.35001
How to Cite This Entry:
Strong solution. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Strong_solution&oldid=16232
This article was adapted from an original article by A.P. Soldatov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article