Namespaces
Variants
Actions

Stokes theorem

From Encyclopedia of Mathematics
Revision as of 15:02, 26 January 2014 by Camillo.delellis (talk | contribs)
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

2020 Mathematics Subject Classification: Primary: 58A [MSN][ZBL]

The term refers, in the modern literature, to the following theorem.

Theorem Let $M$ be a compact orientable differentiable manifold with boundary (denoted by $\partial M$) and let $k$ be the dimension of $M$. If $\omega$ is a differential $k-1$-form, then \[ \int_M d \omega = \int_{\partial M} \omega \] (see Integration on manifolds for the definition of integral of a form on a differentiable manifold).

The theorem can be considered as a generalization of the Fundamental theorem of calculus. The classical Gauss-Green theorem and the Stokes formula can be recovered as particular cases. The latter is also often called Stokes theorem and it is stated as follows.

Theorem Let $\Sigma\subset \mathbb R^3$ be a compact regular $2$-dimensional surface $\Sigma$ that bounds the $C^1$ curve $\gamma$ and let $v$ be a $C^1$ vector field. Then \begin{equation}\label{e:Stokes_2} \int_\Sigma (\nabla \times v) \cdot \nu = \int_\gamma \tau \cdot v\, , \end{equation} where

  • $\nu$ is a continuous unit vector field normal to the surface $\Sigma$
  • $\tau$ is a continuous unit vector field tangent to the curve $\gamma$, compatible with $\nu$
  • $\nabla \times v$ is the curl of the vector field $v$.

The right hand side of \eqref{e:Stokes_2} is called the flow of $v$ through $\Sigma$, whereas the left hand side is called the circulation of $v$ along $\gamma$. The theorem can be easily generalized to surfaces whose boundary consists of finitely many curves: the right hand side of \eqref{e:Stokes_2} is then replaced by the sum of the integrals over the corresponding curves.

References

[Ap] T.M. Apostol, "Calculus" , I , Blaisdell (1967) MR0214705 Zbl 0148.28201
[Sp] M. Spivak, "Calculus on manifolds" , Benjamin (1965) MR0209411 Zbl 0141.05403
How to Cite This Entry:
Stokes theorem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Stokes_theorem&oldid=31279
This article was adapted from an original article by L.D. Kudryavtsev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article