Namespaces
Variants
Actions

Stochastic indistinguishability

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.


2020 Mathematics Subject Classification: Primary: 60Gxx [MSN][ZBL]

A property of two random processes $ X = ( X _ {t} ( \omega )) _ {t \geq 0 } $ and $ Y = ( Y _ {t} ( \omega )) _ {t \geq 0 } $ which states that the random set

$$ \{ X \neq Y \} = \ \{ {( \omega , t) } : {X _ {t} ( \omega ) \neq Y _ {t} ( \omega ) } \} $$

can be disregarded, i.e. that the probability of the set $ \{ \omega : {\exists t \geq 0 : ( \omega , t) \in \{ X \neq Y \} } \} $ is equal to zero. If $ X $ and $ Y $ are stochastically indistinguishable, then $ X _ {t} = Y _ {t} $ for all $ t \geq 0 $, i.e. $ X $ and $ Y $ are stochastically equivalent (cf. Stochastic equivalence). The opposite, generally speaking, is not true, but for processes that are continuous from the right (left), stochastic indistinguishability follows from stochastic equivalence.

References

[D] C. Dellacherie, "Capacités et processus stochastiques" , Springer (1972) MR0448504 Zbl 0246.60032

Comments

References

[DM] C. Dellacherie, P.A. Meyer, "Probabilities and potential" , A , North-Holland (1978) (Translated from French) MR0521810 Zbl 0494.60001
How to Cite This Entry:
Stochastic indistinguishability. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Stochastic_indistinguishability&oldid=48850
This article was adapted from an original article by A.N. Shiryaev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article