Namespaces
Variants
Actions

Difference between revisions of "Stochastic equivalence"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (MR/ZBL numbers added)
Line 1: Line 1:
 
The equivalence relation between random variables that differ only on a set of probability zero. More precisely, two random variables <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090090/s0900901.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090090/s0900902.png" />, defined on a common probability space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090090/s0900903.png" />, are called stochastically equivalent if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090090/s0900904.png" />. In most problems of probability theory one deals with classes of equivalent random variables, rather than with the random variables themselves.
 
The equivalence relation between random variables that differ only on a set of probability zero. More precisely, two random variables <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090090/s0900901.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090090/s0900902.png" />, defined on a common probability space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090090/s0900903.png" />, are called stochastically equivalent if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090090/s0900904.png" />. In most problems of probability theory one deals with classes of equivalent random variables, rather than with the random variables themselves.
  
Two stochastic processes <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090090/s0900905.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090090/s0900906.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090090/s0900907.png" />, defined on a common probability space are called stochastically equivalent if for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090090/s0900908.png" /> stochastic equivalence holds between the corresponding random variables: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090090/s0900909.png" />. With regard to stochastic processes <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090090/s09009010.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090090/s09009011.png" /> with coinciding finite-dimensional distributions, the term "stochastic equivalence" is sometimes used in the broad sense.
+
Two stochastic processes <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090090/s0900905.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090090/s0900906.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090090/s0900907.png" />, defined on a common probability space are called stochastically equivalent if for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090090/s0900908.png" /> stochastic equivalence holds between the corresponding random variables: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090090/s0900909.png" />. With regard to stochastic processes <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090090/s09009010.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090090/s09009011.png" /> with coinciding finite-dimensional distributions, the term "stochastic equivalence" is sometimes used in the broad sense.
  
  
Line 9: Line 9:
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> J.L. Doob,   "Classical potential theory and its probabilistic counterpart" , Springer (1984) pp. 390</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> I.I. [I.I. Gikhman] Gihman,   A.V. [A.V. Skorokhod] Skorohod,   "The theory of stochastic processes" , '''1''' , Springer (1974) pp. 43ff (Translated from Russian)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> C. Dellacherie,   "Capacités et processus stochastiques" , Springer (1972) pp. 46</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> A.V. [A.V. Skorokhod] Skorohod,   "Random processes with independent increments" , Kluwer (1991) pp. 9 (Translated from Russian)</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> R.Sh. Liptser,   A.N. [A.N. Shiryaev] Shiryayev,   "Theory of martingales" , Kluwer (1989) pp. 4 (Translated from Russian)</TD></TR></table>
+
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> J.L. Doob, "Classical potential theory and its probabilistic counterpart" , Springer (1984) pp. 390 {{MR|0731258}} {{ZBL|0549.31001}} </TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> I.I. [I.I. Gikhman] Gihman, A.V. [A.V. Skorokhod] Skorohod, "The theory of stochastic processes" , '''1''' , Springer (1974) pp. 43ff (Translated from Russian) {{MR|0346882}} {{ZBL|0291.60019}} </TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> C. Dellacherie, "Capacités et processus stochastiques" , Springer (1972) pp. 46 {{MR|0448504}} {{ZBL|0246.60032}} </TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> A.V. [A.V. Skorokhod] Skorohod, "Random processes with independent increments" , Kluwer (1991) pp. 9 (Translated from Russian) {{MR|1155400}} {{ZBL|}} </TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> R.Sh. Liptser, A.N. [A.N. Shiryaev] Shiryayev, "Theory of martingales" , Kluwer (1989) pp. 4 (Translated from Russian) {{MR|1022664}} {{ZBL|0728.60048}} </TD></TR></table>

Revision as of 10:32, 27 March 2012

The equivalence relation between random variables that differ only on a set of probability zero. More precisely, two random variables and , defined on a common probability space , are called stochastically equivalent if . In most problems of probability theory one deals with classes of equivalent random variables, rather than with the random variables themselves.

Two stochastic processes and , , defined on a common probability space are called stochastically equivalent if for any stochastic equivalence holds between the corresponding random variables: . With regard to stochastic processes and with coinciding finite-dimensional distributions, the term "stochastic equivalence" is sometimes used in the broad sense.


Comments

The members of a stochastic equivalence class (of random variables or stochastic processes) are sometimes referred to as versions (of each other or of the equivalence class). A version of a random variable or stochastic process is also called a modification.

References

[a1] J.L. Doob, "Classical potential theory and its probabilistic counterpart" , Springer (1984) pp. 390 MR0731258 Zbl 0549.31001
[a2] I.I. [I.I. Gikhman] Gihman, A.V. [A.V. Skorokhod] Skorohod, "The theory of stochastic processes" , 1 , Springer (1974) pp. 43ff (Translated from Russian) MR0346882 Zbl 0291.60019
[a3] C. Dellacherie, "Capacités et processus stochastiques" , Springer (1972) pp. 46 MR0448504 Zbl 0246.60032
[a4] A.V. [A.V. Skorokhod] Skorohod, "Random processes with independent increments" , Kluwer (1991) pp. 9 (Translated from Russian) MR1155400
[a5] R.Sh. Liptser, A.N. [A.N. Shiryaev] Shiryayev, "Theory of martingales" , Kluwer (1989) pp. 4 (Translated from Russian) MR1022664 Zbl 0728.60048
How to Cite This Entry:
Stochastic equivalence. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Stochastic_equivalence&oldid=17201
This article was adapted from an original article by A.V. Prokhorov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article