Namespaces
Variants
Actions

Difference between revisions of "Steenrod-Eilenberg axioms"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
(One intermediate revision by the same user not shown)
Line 1: Line 1:
Axioms describing the basic properties of homology (cohomology) groups (cf. [[Cohomology group|Cohomology group]]; [[Homology group|Homology group]]), which uniquely define the relevant homology (cohomology) theory. An axiomatic homology theory is defined on a certain category of pairs <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087520/s0875201.png" /> of topological spaces if for any integer <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087520/s0875202.png" /> an Abelian group (or module over some ring) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087520/s0875203.png" /> is assigned to every pair <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087520/s0875204.png" />, while a homomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087520/s0875205.png" /> is assigned to each mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087520/s0875206.png" /> in such a way that the following axioms are satisfied:
+
<!--
 +
s0875201.png
 +
$#A+1 = 36 n = 0
 +
$#C+1 = 36 : ~/encyclopedia/old_files/data/S087/S.0807520 Steenrod\ANDEilenberg axioms
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
1) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087520/s0875207.png" /> is the identity isomorphism if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087520/s0875208.png" /> is the identity homeomorphism;
+
{{TEX|auto}}
 +
{{TEX|done}}
  
2) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087520/s0875209.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087520/s08752010.png" />;
+
Axioms describing the basic properties of homology (cohomology) groups (cf. [[Cohomology group|Cohomology group]]; [[Homology group|Homology group]]), which uniquely define the relevant homology (cohomology) theory. An axiomatic homology theory is defined on a certain category of pairs  $  ( X, A) $
 +
of topological spaces if for any integer  $  q $
 +
an Abelian group (or module over some ring)  $  H _ {q} ( X, A) $
 +
is assigned to every pair  $  ( X, A) $,
 +
while a homomorphism  $  f _  \star  :  H _ {q} ( X, A) \rightarrow H _ {q} ( Y, B) $
 +
is assigned to each mapping  $  f:  ( X, A) \rightarrow ( Y, B) $
 +
in such a way that the following axioms are satisfied:
  
3) connecting homomorphisms <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087520/s08752011.png" /> are defined such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087520/s08752012.png" /> (here <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087520/s08752013.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087520/s08752014.png" /> is the empty set, while the mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087520/s08752015.png" />, induced by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087520/s08752016.png" />, is also denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087520/s08752017.png" />);
+
1)  $  f _  \star  $
 +
is the identity isomorphism if  $  f $
 +
is the identity homeomorphism;
 +
 
 +
2)  $  ( gf  ) _  \star  = g _  \star  f _  \star  $,
 +
where  $  g:  ( Y, B) \rightarrow ( Z, C) $;
 +
 
 +
3) connecting homomorphisms $  \partial  : H _ {q} ( X, A) \rightarrow H _ {q-} 1 ( A) $
 +
are defined such that $  \partial  f _  \star  = f _  \star  \partial  $(
 +
here $  A=( A, \emptyset) $,  
 +
$  \emptyset $
 +
is the empty set, while the mapping $  A \rightarrow B $,  
 +
induced by $  f $,  
 +
is also denoted by $  f  $);
  
 
4) the exactness axiom: The homology sequence
 
4) the exactness axiom: The homology sequence
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087520/s08752018.png" /></td> </tr></table>
+
$$
 +
{} \dots \rightarrow  H _ {q+} 1 ( X, A)  \mathop \rightarrow \limits ^  \partial    H _ {q} ( A)  \rightarrow ^ { {i _ \star} }  H _ {q} ( X)  \rightarrow ^ { {j _ \star} }
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087520/s08752019.png" /></td> </tr></table>
+
$$
 +
\rightarrow ^ { {j _ \star} }  H _ {q} ( X, A)  \mathop \rightarrow \limits ^  \partial    H _ {q-} 1 ( A)  \rightarrow \dots ,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087520/s08752020.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087520/s08752021.png" /> are inclusions, is exact, i.e. the kernel of every homomorphism coincides with the image of the previous one;
+
where $  i: A \subset  X $,  
 +
$  j: X \subset  ( X, A) $
 +
are inclusions, is exact, i.e. the kernel of every homomorphism coincides with the image of the previous one;
  
5) the homotopy axiom: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087520/s08752022.png" /> for homotopic mappings <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087520/s08752023.png" /> in the category under consideration;
+
5) the homotopy axiom: $  f _  \star  = f _  \star  ^ { \prime } $
 +
for homotopic mappings $  f, f ^ { \prime } : ( X, A) \rightarrow ( Y, B) $
 +
in the category under consideration;
  
6) the excision axiom: If the closure in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087520/s08752024.png" /> of an open subset <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087520/s08752025.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087520/s08752026.png" /> is contained in the interior of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087520/s08752027.png" />, and the inclusion <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087520/s08752028.png" /> belongs to the category, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087520/s08752029.png" /> is an isomorphism;
+
6) the excision axiom: If the closure in $  X $
 +
of an open subset $  U $
 +
in $  X $
 +
is contained in the interior of $  A $,  
 +
and the inclusion $  i: ( X\setminus  U, A\setminus  U) \subset  ( X, A) $
 +
belongs to the category, then $  i _  \star  $
 +
is an isomorphism;
  
7) the dimension axiom: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087520/s08752030.png" /> when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087520/s08752031.png" /> for any singleton <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087520/s08752032.png" />. The group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087520/s08752033.png" /> is usually called the coefficient group. Axiomatic cohomology theories are dually defined (homomorphisms <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087520/s08752034.png" /> are assigned to mappings <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087520/s08752035.png" />; the connecting homomorphisms take the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087520/s08752036.png" />). In the category of compact polyhedra, the ordinary homology and cohomology theories are the unique axiomatic theories with a given coefficient group (the uniqueness theorem). In the category of all polyhedra, the uniqueness theorem holds when the requirement is added that the homology (cohomology) of a union of open-closed, pairwise-disjoint subspaces be naturally isomorphic to the direct sum of the homology (direct product of the cohomology) of the subspaces (Milnor's additivity axiom). An axiomatic description of homology and cohomology theory also exists in more general categories of topological spaces (see [[#References|[2]]], [[#References|[3]]]). [[Generalized cohomology theories|Generalized cohomology theories]] satisfy all the Steenrod–Eilenberg axioms (except for the dimension axiom), but are not uniquely defined by them.
+
7) the dimension axiom: $  H _ {q} ( P) = 0 $
 +
when $  q \neq 0 $
 +
for any singleton $  P $.  
 +
The group $  H _ {0} ( P) $
 +
is usually called the coefficient group. Axiomatic cohomology theories are dually defined (homomorphisms $  f ^ { \star } : H  ^ {q} ( Y, B) \rightarrow H  ^ {q} ( X, A) $
 +
are assigned to mappings $  f $;  
 +
the connecting homomorphisms take the form $  \delta : H  ^ {q} ( A) \rightarrow H  ^ {q+} 1 ( X, A) $).  
 +
In the category of compact polyhedra, the ordinary homology and cohomology theories are the unique axiomatic theories with a given coefficient group (the uniqueness theorem). In the category of all polyhedra, the uniqueness theorem holds when the requirement is added that the homology (cohomology) of a union of open-closed, pairwise-disjoint subspaces be naturally isomorphic to the direct sum of the homology (direct product of the cohomology) of the subspaces (Milnor's additivity axiom). An axiomatic description of homology and cohomology theory also exists in more general categories of topological spaces (see [[#References|[2]]], [[#References|[3]]]). [[Generalized cohomology theories|Generalized cohomology theories]] satisfy all the Steenrod–Eilenberg axioms (except for the dimension axiom), but are not uniquely defined by them.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  S. Eilenberg,  N.E. Steenrod,  "Foundations of algebraic topology" , Princeton Univ. Press  (1966)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  S.V. Petkova,  "On the axioms of homology theory"  ''Math. USSR Sb.'' , '''19''' :  4  (1973)  pp. 597–614  ''Mat. Sb.'' , '''90''' :  4  (1973)  pp. 607–624</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  W.S. Massey,  "Notes on homology and cohomology theory" , Yale Univ. Press  (1964)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  S. Eilenberg,  N.E. Steenrod,  "Foundations of algebraic topology" , Princeton Univ. Press  (1966)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  S.V. Petkova,  "On the axioms of homology theory"  ''Math. USSR Sb.'' , '''19''' :  4  (1973)  pp. 597–614  ''Mat. Sb.'' , '''90''' :  4  (1973)  pp. 607–624</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  W.S. Massey,  "Notes on homology and cohomology theory" , Yale Univ. Press  (1964)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====

Revision as of 08:23, 6 June 2020


Axioms describing the basic properties of homology (cohomology) groups (cf. Cohomology group; Homology group), which uniquely define the relevant homology (cohomology) theory. An axiomatic homology theory is defined on a certain category of pairs $ ( X, A) $ of topological spaces if for any integer $ q $ an Abelian group (or module over some ring) $ H _ {q} ( X, A) $ is assigned to every pair $ ( X, A) $, while a homomorphism $ f _ \star : H _ {q} ( X, A) \rightarrow H _ {q} ( Y, B) $ is assigned to each mapping $ f: ( X, A) \rightarrow ( Y, B) $ in such a way that the following axioms are satisfied:

1) $ f _ \star $ is the identity isomorphism if $ f $ is the identity homeomorphism;

2) $ ( gf ) _ \star = g _ \star f _ \star $, where $ g: ( Y, B) \rightarrow ( Z, C) $;

3) connecting homomorphisms $ \partial : H _ {q} ( X, A) \rightarrow H _ {q-} 1 ( A) $ are defined such that $ \partial f _ \star = f _ \star \partial $( here $ A=( A, \emptyset) $, $ \emptyset $ is the empty set, while the mapping $ A \rightarrow B $, induced by $ f $, is also denoted by $ f $);

4) the exactness axiom: The homology sequence

$$ {} \dots \rightarrow H _ {q+} 1 ( X, A) \mathop \rightarrow \limits ^ \partial H _ {q} ( A) \rightarrow ^ { {i _ \star} } H _ {q} ( X) \rightarrow ^ { {j _ \star} } $$

$$ \rightarrow ^ { {j _ \star} } H _ {q} ( X, A) \mathop \rightarrow \limits ^ \partial H _ {q-} 1 ( A) \rightarrow \dots , $$

where $ i: A \subset X $, $ j: X \subset ( X, A) $ are inclusions, is exact, i.e. the kernel of every homomorphism coincides with the image of the previous one;

5) the homotopy axiom: $ f _ \star = f _ \star ^ { \prime } $ for homotopic mappings $ f, f ^ { \prime } : ( X, A) \rightarrow ( Y, B) $ in the category under consideration;

6) the excision axiom: If the closure in $ X $ of an open subset $ U $ in $ X $ is contained in the interior of $ A $, and the inclusion $ i: ( X\setminus U, A\setminus U) \subset ( X, A) $ belongs to the category, then $ i _ \star $ is an isomorphism;

7) the dimension axiom: $ H _ {q} ( P) = 0 $ when $ q \neq 0 $ for any singleton $ P $. The group $ H _ {0} ( P) $ is usually called the coefficient group. Axiomatic cohomology theories are dually defined (homomorphisms $ f ^ { \star } : H ^ {q} ( Y, B) \rightarrow H ^ {q} ( X, A) $ are assigned to mappings $ f $; the connecting homomorphisms take the form $ \delta : H ^ {q} ( A) \rightarrow H ^ {q+} 1 ( X, A) $). In the category of compact polyhedra, the ordinary homology and cohomology theories are the unique axiomatic theories with a given coefficient group (the uniqueness theorem). In the category of all polyhedra, the uniqueness theorem holds when the requirement is added that the homology (cohomology) of a union of open-closed, pairwise-disjoint subspaces be naturally isomorphic to the direct sum of the homology (direct product of the cohomology) of the subspaces (Milnor's additivity axiom). An axiomatic description of homology and cohomology theory also exists in more general categories of topological spaces (see [2], [3]). Generalized cohomology theories satisfy all the Steenrod–Eilenberg axioms (except for the dimension axiom), but are not uniquely defined by them.

References

[1] S. Eilenberg, N.E. Steenrod, "Foundations of algebraic topology" , Princeton Univ. Press (1966)
[2] S.V. Petkova, "On the axioms of homology theory" Math. USSR Sb. , 19 : 4 (1973) pp. 597–614 Mat. Sb. , 90 : 4 (1973) pp. 607–624
[3] W.S. Massey, "Notes on homology and cohomology theory" , Yale Univ. Press (1964)

Comments

In the West, these axioms are invariably called the Eilenberg–Steenrod axioms; the reversal of the two names in Russian is a consequence of Cyrillic alphabetical order. Often the phrase "Eilenberg–Steenrod axioms" is used to refer only to the last four of the axioms above, the first three being taken as part of the definition of the functor to which the axioms apply. The four named axioms are independent; however, the homotopy axiom becomes redundant if one strengthens the dimension axiom to the assertion that the homology of any contractible space is the same as that of a point. It is also possible [a1] to axiomatize homology theories defined on categories whose objects are single spaces rather than pairs of spaces; in this formulation the exactness axiom is replaced by a Mayer–Vietoris axiom.

References

[a1] G.M. Kelly, "Single-space axioms for homology theory" Proc. Cambridge Philos. Soc. , 55 (1959) pp. 10–22
How to Cite This Entry:
Steenrod-Eilenberg axioms. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Steenrod-Eilenberg_axioms&oldid=18023
This article was adapted from an original article by E.G. Sklyarenko (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article