Namespaces
Variants
Actions

Difference between revisions of "Stationary phase, method of the"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (fixing superscript)
 
(3 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 +
<!--
 +
s0872701.png
 +
$#A+1 = 77 n = 0
 +
$#C+1 = 77 : ~/encyclopedia/old_files/data/S087/S.0807270 Stationary phase, method of the
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
A method for calculating the asymptotics of integrals of rapidly-oscillating functions:
 
A method for calculating the asymptotics of integrals of rapidly-oscillating functions:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087270/s0872701.png" /></td> <td valign="top" style="width:5%;text-align:right;">(*)</td></tr></table>
+
$$ \tag{* }
 +
F( \lambda )  = \int\limits _  \Omega  f( x) e ^ {i \lambda S( x) }  dx,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087270/s0872702.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087270/s0872703.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087270/s0872704.png" />, is a large parameter, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087270/s0872705.png" /> is a bounded domain, the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087270/s0872706.png" /> (the phase) is real, the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087270/s0872707.png" /> is complex, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087270/s0872708.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087270/s0872709.png" />, i.e. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087270/s08727010.png" /> has compact support, and the phase <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087270/s08727011.png" /> does not have stationary points (i.e. points at which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087270/s08727012.png" />) on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087270/s08727013.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087270/s08727014.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087270/s08727015.png" />, for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087270/s08727016.png" /> as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087270/s08727017.png" />. Therefore, when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087270/s08727018.png" />, the points of stationary phase and the boundary <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087270/s08727019.png" /> give the essential contribution to the asymptotics of the integral (*). The integrals
+
where $  x \in \mathbf R  ^ {n} $,
 +
$  \lambda > 0 $,  
 +
$  \lambda \rightarrow + \infty $,  
 +
is a large parameter, $  \Omega $
 +
is a bounded domain, the function $  S( x) $ (the phase) is real, the function $  f( x) $
 +
is complex, and $  f, S \in C  ^  \infty  ( \mathbf R  ^ {n} ) $.  
 +
If $  f \in C _ {0}  ^  \infty  ( \mathbf R  ^ {n} ) $,  
 +
i.e. $  f $
 +
has compact support, and the phase $  S( x) $
 +
does not have stationary points (i.e. points at which $  S  ^  \prime  ( x) = 0 $)  
 +
on $  \supp  f $,  
 +
$  \Omega = \mathbf R  ^ {n} $,  
 +
then $  F( \lambda ) = O( \lambda ^ {- n } ) $,  
 +
for all $  n $
 +
as $  \lambda \rightarrow + \infty $.  
 +
Therefore, when $  \lambda \rightarrow + \infty $,  
 +
the points of stationary phase and the boundary $  \partial  \Omega $
 +
give the essential contribution to the asymptotics of the integral (*). The integrals
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087270/s08727020.png" /></td> </tr></table>
+
$$
 +
V _ {x  ^ {0}  } ( \lambda )  = \
 +
\int\limits _  \Omega  f( x) \phi _ {0} ( x) e ^ {i \lambda S( x) }  dx ,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087270/s08727021.png" /></td> </tr></table>
+
$$
 +
V _ {\partial  \Omega }  ( \lambda )  = \int\limits _  \Omega
 +
f( x) \phi _ {\partial  \Omega }  ( x) e ^ {i \lambda S( x) }  dx
 +
$$
  
are called the contributions from the isolated stationary point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087270/s08727022.png" /> and the boundary, respectively, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087270/s08727023.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087270/s08727024.png" /> near the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087270/s08727025.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087270/s08727026.png" /> does not contain any other stationary points, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087270/s08727027.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087270/s08727028.png" /> in a certain neighbourhood of the boundary. For <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087270/s08727029.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087270/s08727030.png" />:
+
are called the contributions from the isolated stationary point $  x  ^ {0} $
 +
and the boundary, respectively, where $  \phi _ {0} \in C _ {0}  ^  \infty  ( \Omega ) $,  
 +
$  \phi _ {0} \equiv 1 $
 +
near the point $  x  ^ {0} $
 +
and $  \supp  \phi _ {0} $
 +
does not contain any other stationary points, $  \phi _ {\partial  \Omega }  \in C _ {0}  ^  \infty  ( \mathbf R  ^ {n} ) $
 +
and $  \phi _ {\partial  \Omega }  \equiv 1 $
 +
in a certain neighbourhood of the boundary. For $  n= 1 $,
 +
$  \Omega = ( a, b) $:
  
1) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087270/s08727031.png" />, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087270/s08727032.png" />;
+
1) $  V _ {a} ( \lambda ) =  
 +
\frac{i}{\lambda S  ^  \prime  ( a) }
 +
e ^ {i \lambda S( a) } [ f( a) + O( \lambda  ^ {-1} )] $,  
 +
if $  S  ^  \prime  ( a) \neq 0 $;
  
 
2)
 
2)
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087270/s08727033.png" /></td> </tr></table>
+
$$
 +
V _ {x  ^ {0}  } ( \lambda )  = \sqrt {
 +
\frac{2 \pi }{\lambda | S  ^ {\prime\prime} ( x  ^ {0} ) | }
 +
} e ^ {i ( \lambda S ( x  ^ {0} ) + \pi \delta _ {0} / 4 ) } \times
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087270/s08727034.png" /></td> </tr></table>
+
$$
 +
\times
 +
[ f( x  ^ {0} ) + O( \lambda  ^ {-1} )],\ \
 +
\delta _ {0} = \mathop{\rm sgn}  S  ^ {\prime\prime} ( x  ^ {0} ),
 +
$$
  
if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087270/s08727035.png" /> is an interior point of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087270/s08727036.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087270/s08727037.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087270/s08727038.png" />.
+
if $  x  ^ {0} $
 +
is an interior point of $  \Omega $
 +
and  $  S  ^  \prime  ( x  ^ {0} ) = 0 $,  
 +
$  S  ^ {\prime\prime} ( x  ^ {0} ) \neq 0 $.
  
Detailed research has been carried out in the case where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087270/s08727039.png" />, the phase <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087270/s08727040.png" /> has a finite number of stationary points, all of finite multiplicity, and the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087270/s08727041.png" /> has zeros of finite multiplicity at these points and at the end-points of an interval <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087270/s08727042.png" />. Asymptotic expansions have been obtained. The case where the functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087270/s08727043.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087270/s08727044.png" /> have power singularities has also been studied: for example, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087270/s08727045.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087270/s08727046.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087270/s08727047.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087270/s08727048.png" /> are smooth functions when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087270/s08727049.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087270/s08727050.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087270/s08727051.png" />.
+
Detailed research has been carried out in the case where $  n= 1 $,  
 +
the phase $  S $
 +
has a finite number of stationary points, all of finite multiplicity, and the function $  f $
 +
has zeros of finite multiplicity at these points and at the end-points of an interval $  \Omega $.  
 +
Asymptotic expansions have been obtained. The case where the functions $  f $
 +
and $  S $
 +
have power singularities has also been studied: for example, $  f = x  ^  \alpha  f _ {1} ( x) $,  
 +
$  S = x  ^  \beta  S _ {1} ( x) $,  
 +
where $  f _ {1} $,  
 +
$  S _ {1} $
 +
are smooth functions when $  x = 0 $,
 +
$  \alpha > - 1 $,  
 +
$  \beta > 0 $.
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087270/s08727052.png" />, and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087270/s08727053.png" /> be a non-degenerate stationary point (i.e. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087270/s08727054.png" />). The contribution from the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087270/s08727055.png" /> is then equal to
+
Let $  n \geq  2 $,  
 +
and let $  x  ^ {0} \in \Omega $
 +
be a non-degenerate stationary point (i.e. $  \Delta _ {S} ( x  ^ {0} ) = \mathop{\rm det}  S  ^ {\prime\prime} ( x  ^ {0} ) \neq 0 $).  
 +
The contribution from the point $  x  ^ {0} $
 +
is then equal to
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087270/s08727056.png" /></td> </tr></table>
+
$$
 +
V _ {x  ^ {0}  } ( \lambda )  = \
 +
\left (
 +
\frac{2 \pi } \lambda
 +
\right )  ^ {n/2} | \Delta _ {S} ( x  ^ {0} ) |  ^ {-1/2} \times
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087270/s08727057.png" /></td> </tr></table>
+
$$
 +
\times
 +
\mathop{\rm exp} \left [ i \left ( \lambda S( x  ^ {0} ) + +
 +
\frac \pi {4}
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087270/s08727058.png" /> is the [[Signature|signature]] of the matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087270/s08727059.png" />. There is also an asymptotic series for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087270/s08727060.png" /> (for the formulas of the contribution <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087270/s08727061.png" /> in the case of a smooth boundary, see [[#References|[5]]]).
+
\delta _ {S} ( x  ^ {0} ) \right ) \right ] [ f( x  ^ {0} ) + O( \lambda  ^ {-1} )],
 +
$$
  
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087270/s08727062.png" /> is a stationary point of finite multiplicity, then (see [[#References|[6]]])
+
where  $  \delta _ {S} ( x  ^ {0} ) $
 +
is the [[Signature|signature]] of the matrix  $  S  ^ {\prime\prime} ( x  ^ {0} ) $.  
 +
There is also an asymptotic series for  $  V _ {x  ^ {0}  } ( \lambda ) $ (for the formulas of the contribution  $  V _ {\partial  \Omega }  ( \lambda ) $
 +
in the case of a smooth boundary, see [[#References|[5]]]).
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087270/s08727063.png" /></td> </tr></table>
+
If  $  x  ^ {0} \in \Omega $
 +
is a stationary point of finite multiplicity, then (see [[#References|[6]]])
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087270/s08727064.png" /> are rational numbers, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087270/s08727065.png" />. Degenerate stationary points have been studied, cf. [[#References|[3]]], [[#References|[4]]].
+
$$
 +
V _ {x  ^ {0}  } ( \lambda )  \sim  \mathop{\rm exp} [ i \lambda S( x  ^ {0} )] \sum _ { k= 0} ^  \infty  \left ( \sum _ { l= 0} ^ { N }  a _ {kl} \lambda ^ {- r _ {k} } (  \mathop{\rm ln}  \lambda )  ^ {l} \right ) ,
 +
$$
  
Studies have been made on the case where the phase <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087270/s08727066.png" /> depends on a real parameter <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087270/s08727067.png" />, and for small <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087270/s08727068.png" /> has two close non-degenerate stationary points. In this case, the asymptotics of the integral <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087270/s08727069.png" /> can be expressed in terms of [[Airy functions|Airy functions]] (see [[#References|[5]]], [[#References|[10]]]). The method of the stationary phase has an operator variant: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087270/s08727070.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087270/s08727071.png" /> is the infinitesimal operator of the strongly-continuous group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087270/s08727072.png" /> of operators bounded on the axis <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087270/s08727073.png" />, acting on a Banach space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087270/s08727074.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087270/s08727075.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087270/s08727076.png" /> are smooth functions with values in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087270/s08727077.png" /> [[#References|[9]]]. If the functions are analytic, then the method of the stationary phase is a particular case of the [[Saddle point method|saddle point method]].
+
where  $  r _ {k} $
 +
are rational numbers,  $  n/2 \leq  r _ {0} < \dots < r _ {k} \rightarrow + \infty $.
 +
Degenerate stationary points have been studied, cf. [[#References|[3]]], [[#References|[4]]].
 +
 
 +
Studies have been made on the case where the phase $  S = S( x, \alpha ) $
 +
depends on a real parameter $  \alpha $,  
 +
and for small $  | \alpha | $
 +
has two close non-degenerate stationary points. In this case, the asymptotics of the integral $  F( \lambda , \alpha ) $
 +
can be expressed in terms of [[Airy functions|Airy functions]] (see [[#References|[5]]], [[#References|[10]]]). The method of the stationary phase has an operator variant: $  \lambda = A $,  
 +
where $  A $
 +
is the infinitesimal operator of the strongly-continuous group $  \{ e  ^ {itA} \} $
 +
of operators bounded on the axis $  - \infty < t < \infty $,  
 +
acting on a Banach space $  B $,  
 +
and $  f( x) $,  
 +
$  S( x) $
 +
are smooth functions with values in $  B $[[#References|[9]]]. If the functions are analytic, then the method of the stationary phase is a particular case of the [[Saddle point method|saddle point method]].
  
 
====References====
 
====References====
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> W. Thomson,   ''Philos. Mag.'' , '''23''' (1887) pp. 252–255</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> A. Erdélyi,   "Asymptotic expansions" , Dover, reprint (1956)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> E.Ya. Rieksteyn'sh,   "Asymptotic expansions of integrals" , '''1–2''' , Riga (1974–1977) (In Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> F.W.J. Olver,   "Asymptotics and special functions" , Acad. Press (1974)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> M.V. Fedoryuk,   "The method of steepest descent" , Moscow (1977) (In Russian)</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> M.F. Atiyah,   "Resolution of singularities and division of distributions" ''Comm. Pure Appl. Math.'' , '''23''' : 2 (1970) pp. 145–150</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top"> V.I. Arnol'd,   "Remarks on the stationary phase method and Coxeter numbers" ''Russian Math. Surveys'' , '''28''' : 5 (1973) pp. 19–48 ''Uspekhi Mat. Nauk'' , '''28''' : 5 (1973) pp. 17–44</TD></TR><TR><TD valign="top">[8]</TD> <TD valign="top"> A.N. Varchenko,   "Newton polyhedra and estimation of oscillating integrals" ''Funct. Anal. Appl'' , '''10''' : 3 (1976) pp. 175–196 ''Funktsional. Anal. i Prilozhen.'' , '''10''' : 3 (1976) pp. 13–38</TD></TR><TR><TD valign="top">[9]</TD> <TD valign="top"> V.P. Maslov,   M.V. Fedoryuk,   "Semi-classical approximation in quantum mechanics" , Reidel (1981) (Translated from Russian)</TD></TR><TR><TD valign="top">[10]</TD> <TD valign="top"> M.V. Fedoryuk,   "Asymptotics. Integrals and series" , Moscow (1987) (In Russian)</TD></TR></table>
+
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> W. Thomson, ''Philos. Mag.'' , '''23''' (1887) pp. 252–255</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> A. Erdélyi, "Asymptotic expansions" , Dover, reprint (1956) {{MR|0081379}} {{MR|0078494}} {{ZBL|0072.11703}} {{ZBL|0070.29002}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> E.Ya. Rieksteyn'sh, "Asymptotic expansions of integrals" , '''1–2''' , Riga (1974–1977) (In Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> F.W.J. Olver, "Asymptotics and special functions" , Acad. Press (1974) {{MR|0435697}} {{ZBL|0308.41023}} {{ZBL|0303.41035}} </TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> M.V. Fedoryuk, "The method of steepest descent" , Moscow (1977) (In Russian)</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> M.F. Atiyah, "Resolution of singularities and division of distributions" ''Comm. Pure Appl. Math.'' , '''23''' : 2 (1970) pp. 145–150 {{MR|0256156}} {{ZBL|0188.19405}} </TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top"> V.I. Arnol'd, "Remarks on the stationary phase method and Coxeter numbers" ''Russian Math. Surveys'' , '''28''' : 5 (1973) pp. 19–48 ''Uspekhi Mat. Nauk'' , '''28''' : 5 (1973) pp. 17–44 {{MR|}} {{ZBL|0291.40005}} </TD></TR><TR><TD valign="top">[8]</TD> <TD valign="top"> A.N. Varchenko, "Newton polyhedra and estimation of oscillating integrals" ''Funct. Anal. Appl'' , '''10''' : 3 (1976) pp. 175–196 ''Funktsional. Anal. i Prilozhen.'' , '''10''' : 3 (1976) pp. 13–38 {{MR|}} {{ZBL|0351.32011}} </TD></TR><TR><TD valign="top">[9]</TD> <TD valign="top"> V.P. Maslov, M.V. Fedoryuk, "Semi-classical approximation in quantum mechanics" , Reidel (1981) (Translated from Russian) {{MR|}} {{ZBL|0458.58001}} </TD></TR><TR><TD valign="top">[10]</TD> <TD valign="top"> M.V. Fedoryuk, "Asymptotics. Integrals and series" , Moscow (1987) (In Russian) {{MR|0950167}} {{ZBL|0641.41001}} </TD></TR></table>
 
 
 
 
  
 
====Comments====
 
====Comments====
Line 48: Line 151:
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> R. Wong,   "Asymptotic approximations of integrals" , Acad. Press (1989)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> L.V. Hörmander,   "The analysis of linear partial differential operators" , '''1''' , Springer (1983) pp. §7.7</TD></TR></table>
+
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> R. Wong, "Asymptotic approximations of integrals" , Acad. Press (1989) {{MR|1016818}} {{ZBL|0679.41001}} </TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> L.V. Hörmander, "The analysis of linear partial differential operators" , '''1''' , Springer (1983) pp. §7.7 {{MR|0717035}} {{MR|0705278}} {{ZBL|0521.35002}} {{ZBL|0521.35001}} </TD></TR></table>

Latest revision as of 08:08, 4 March 2022


A method for calculating the asymptotics of integrals of rapidly-oscillating functions:

$$ \tag{* } F( \lambda ) = \int\limits _ \Omega f( x) e ^ {i \lambda S( x) } dx, $$

where $ x \in \mathbf R ^ {n} $, $ \lambda > 0 $, $ \lambda \rightarrow + \infty $, is a large parameter, $ \Omega $ is a bounded domain, the function $ S( x) $ (the phase) is real, the function $ f( x) $ is complex, and $ f, S \in C ^ \infty ( \mathbf R ^ {n} ) $. If $ f \in C _ {0} ^ \infty ( \mathbf R ^ {n} ) $, i.e. $ f $ has compact support, and the phase $ S( x) $ does not have stationary points (i.e. points at which $ S ^ \prime ( x) = 0 $) on $ \supp f $, $ \Omega = \mathbf R ^ {n} $, then $ F( \lambda ) = O( \lambda ^ {- n } ) $, for all $ n $ as $ \lambda \rightarrow + \infty $. Therefore, when $ \lambda \rightarrow + \infty $, the points of stationary phase and the boundary $ \partial \Omega $ give the essential contribution to the asymptotics of the integral (*). The integrals

$$ V _ {x ^ {0} } ( \lambda ) = \ \int\limits _ \Omega f( x) \phi _ {0} ( x) e ^ {i \lambda S( x) } dx , $$

$$ V _ {\partial \Omega } ( \lambda ) = \int\limits _ \Omega f( x) \phi _ {\partial \Omega } ( x) e ^ {i \lambda S( x) } dx $$

are called the contributions from the isolated stationary point $ x ^ {0} $ and the boundary, respectively, where $ \phi _ {0} \in C _ {0} ^ \infty ( \Omega ) $, $ \phi _ {0} \equiv 1 $ near the point $ x ^ {0} $ and $ \supp \phi _ {0} $ does not contain any other stationary points, $ \phi _ {\partial \Omega } \in C _ {0} ^ \infty ( \mathbf R ^ {n} ) $ and $ \phi _ {\partial \Omega } \equiv 1 $ in a certain neighbourhood of the boundary. For $ n= 1 $, $ \Omega = ( a, b) $:

1) $ V _ {a} ( \lambda ) = \frac{i}{\lambda S ^ \prime ( a) } e ^ {i \lambda S( a) } [ f( a) + O( \lambda ^ {-1} )] $, if $ S ^ \prime ( a) \neq 0 $;

2)

$$ V _ {x ^ {0} } ( \lambda ) = \sqrt { \frac{2 \pi }{\lambda | S ^ {\prime\prime} ( x ^ {0} ) | } } e ^ {i ( \lambda S ( x ^ {0} ) + \pi \delta _ {0} / 4 ) } \times $$

$$ \times [ f( x ^ {0} ) + O( \lambda ^ {-1} )],\ \ \delta _ {0} = \mathop{\rm sgn} S ^ {\prime\prime} ( x ^ {0} ), $$

if $ x ^ {0} $ is an interior point of $ \Omega $ and $ S ^ \prime ( x ^ {0} ) = 0 $, $ S ^ {\prime\prime} ( x ^ {0} ) \neq 0 $.

Detailed research has been carried out in the case where $ n= 1 $, the phase $ S $ has a finite number of stationary points, all of finite multiplicity, and the function $ f $ has zeros of finite multiplicity at these points and at the end-points of an interval $ \Omega $. Asymptotic expansions have been obtained. The case where the functions $ f $ and $ S $ have power singularities has also been studied: for example, $ f = x ^ \alpha f _ {1} ( x) $, $ S = x ^ \beta S _ {1} ( x) $, where $ f _ {1} $, $ S _ {1} $ are smooth functions when $ x = 0 $, $ \alpha > - 1 $, $ \beta > 0 $.

Let $ n \geq 2 $, and let $ x ^ {0} \in \Omega $ be a non-degenerate stationary point (i.e. $ \Delta _ {S} ( x ^ {0} ) = \mathop{\rm det} S ^ {\prime\prime} ( x ^ {0} ) \neq 0 $). The contribution from the point $ x ^ {0} $ is then equal to

$$ V _ {x ^ {0} } ( \lambda ) = \ \left ( \frac{2 \pi } \lambda \right ) ^ {n/2} | \Delta _ {S} ( x ^ {0} ) | ^ {-1/2} \times $$

$$ \times \mathop{\rm exp} \left [ i \left ( \lambda S( x ^ {0} ) + + \frac \pi {4} \delta _ {S} ( x ^ {0} ) \right ) \right ] [ f( x ^ {0} ) + O( \lambda ^ {-1} )], $$

where $ \delta _ {S} ( x ^ {0} ) $ is the signature of the matrix $ S ^ {\prime\prime} ( x ^ {0} ) $. There is also an asymptotic series for $ V _ {x ^ {0} } ( \lambda ) $ (for the formulas of the contribution $ V _ {\partial \Omega } ( \lambda ) $ in the case of a smooth boundary, see [5]).

If $ x ^ {0} \in \Omega $ is a stationary point of finite multiplicity, then (see [6])

$$ V _ {x ^ {0} } ( \lambda ) \sim \mathop{\rm exp} [ i \lambda S( x ^ {0} )] \sum _ { k= 0} ^ \infty \left ( \sum _ { l= 0} ^ { N } a _ {kl} \lambda ^ {- r _ {k} } ( \mathop{\rm ln} \lambda ) ^ {l} \right ) , $$

where $ r _ {k} $ are rational numbers, $ n/2 \leq r _ {0} < \dots < r _ {k} \rightarrow + \infty $. Degenerate stationary points have been studied, cf. [3], [4].

Studies have been made on the case where the phase $ S = S( x, \alpha ) $ depends on a real parameter $ \alpha $, and for small $ | \alpha | $ has two close non-degenerate stationary points. In this case, the asymptotics of the integral $ F( \lambda , \alpha ) $ can be expressed in terms of Airy functions (see [5], [10]). The method of the stationary phase has an operator variant: $ \lambda = A $, where $ A $ is the infinitesimal operator of the strongly-continuous group $ \{ e ^ {itA} \} $ of operators bounded on the axis $ - \infty < t < \infty $, acting on a Banach space $ B $, and $ f( x) $, $ S( x) $ are smooth functions with values in $ B $[9]. If the functions are analytic, then the method of the stationary phase is a particular case of the saddle point method.

References

[1] W. Thomson, Philos. Mag. , 23 (1887) pp. 252–255
[2] A. Erdélyi, "Asymptotic expansions" , Dover, reprint (1956) MR0081379 MR0078494 Zbl 0072.11703 Zbl 0070.29002
[3] E.Ya. Rieksteyn'sh, "Asymptotic expansions of integrals" , 1–2 , Riga (1974–1977) (In Russian)
[4] F.W.J. Olver, "Asymptotics and special functions" , Acad. Press (1974) MR0435697 Zbl 0308.41023 Zbl 0303.41035
[5] M.V. Fedoryuk, "The method of steepest descent" , Moscow (1977) (In Russian)
[6] M.F. Atiyah, "Resolution of singularities and division of distributions" Comm. Pure Appl. Math. , 23 : 2 (1970) pp. 145–150 MR0256156 Zbl 0188.19405
[7] V.I. Arnol'd, "Remarks on the stationary phase method and Coxeter numbers" Russian Math. Surveys , 28 : 5 (1973) pp. 19–48 Uspekhi Mat. Nauk , 28 : 5 (1973) pp. 17–44 Zbl 0291.40005
[8] A.N. Varchenko, "Newton polyhedra and estimation of oscillating integrals" Funct. Anal. Appl , 10 : 3 (1976) pp. 175–196 Funktsional. Anal. i Prilozhen. , 10 : 3 (1976) pp. 13–38 Zbl 0351.32011
[9] V.P. Maslov, M.V. Fedoryuk, "Semi-classical approximation in quantum mechanics" , Reidel (1981) (Translated from Russian) Zbl 0458.58001
[10] M.V. Fedoryuk, "Asymptotics. Integrals and series" , Moscow (1987) (In Russian) MR0950167 Zbl 0641.41001

Comments

An integral of the form (*) is a special case of a so-called oscillatory integral, or Fourier integral operator, cf. also [a2].

References

[a1] R. Wong, "Asymptotic approximations of integrals" , Acad. Press (1989) MR1016818 Zbl 0679.41001
[a2] L.V. Hörmander, "The analysis of linear partial differential operators" , 1 , Springer (1983) pp. §7.7 MR0717035 MR0705278 Zbl 0521.35002 Zbl 0521.35001
How to Cite This Entry:
Stationary phase, method of the. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Stationary_phase,_method_of_the&oldid=16013
This article was adapted from an original article by M.V. Fedoryuk (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article