Namespaces
Variants
Actions

Difference between revisions of "Stable homotopy group"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (tex encoded by computer)
m (fixing subscripts)
Line 11: Line 11:
 
{{TEX|done}}
 
{{TEX|done}}
  
'' $  k $-
+
'' $  k $-stable homotopy group  $  \pi _ {k}  ^ {s\star} ( X) $, of a topological space  $  X $''
stable homotopy group  $  \pi _ {k}  ^ {s\star} ( X) $,  
 
of a topological space  $  X $''
 
  
 
The inductive limit of the sequence
 
The inductive limit of the sequence
  
 
$$ \tag{* }
 
$$ \tag{* }
\pi _ {k} ( X)  \rightarrow ^ { E }  \pi _ {k+} 1 ( EX)  \rightarrow ^ { E }  \pi _ {k+} 2 ( E  ^ {2} X)  \rightarrow ^ { E }  \dots ,
+
\pi _ {k} ( X)  \rightarrow ^ { E }  \pi _ {k+1} ( EX)  \rightarrow ^ { E }  \pi _ {k+2} ( E  ^ {2} X)  \rightarrow ^ { E }  \dots ,
 
$$
 
$$
  
 
where  $  EY $
 
where  $  EY $
 
is the [[Suspension|suspension]] over the topological space  $  Y $.  
 
is the [[Suspension|suspension]] over the topological space  $  Y $.  
The suspension homomorphism  $  E:  \pi _ {m} ( Y) \rightarrow \pi _ {m+} 1 ( EY) $
+
The suspension homomorphism  $  E:  \pi _ {m} ( Y) \rightarrow \pi _ {m+1} ( EY) $
 
relates the class of the spheroid  $  f:  S  ^ {m} \rightarrow Y $
 
relates the class of the spheroid  $  f:  S  ^ {m} \rightarrow Y $
 
to the class of the spheroid  $  Ef:  ES  ^ {m} = S  ^ {m+} 1 \rightarrow EY $,  
 
to the class of the spheroid  $  Ef:  ES  ^ {m} = S  ^ {m+} 1 \rightarrow EY $,  
 
where  $  Ef $
 
where  $  Ef $
 
is obtained by factorization from the mapping  $  f \times  \mathop{\rm Id} _ {( 0,1] }  $.  
 
is obtained by factorization from the mapping  $  f \times  \mathop{\rm Id} _ {( 0,1] }  $.  
The sequence (*) stabilizes at the  $  ( k+ 3) $-
+
The sequence (*) stabilizes at the  $  ( k+ 3) $-rd term (see [[#References|[2]]]), so that  $  \pi _ {k}  ^ {s} ( X) = \pi _ {2k+2} ( E  ^ {k+2} X) $.
rd term (see [[#References|[2]]]), so that  $  \pi _ {k}  ^ {s} ( X) = \pi _ {2k+} 2 ( E  ^ {k+} 2 X) $.
 
  
 
In calculating stable homotopy groups, the Adams [[Spectral sequence|spectral sequence]] is used (see [[#References|[1]]]). Up till now (1991), no stable homotopy group is known at all for any incontractible space. However, partial calculations are known for the homotopy groups of the spheres (cf. [[Spheres, homotopy groups of the|Spheres, homotopy groups of the]]), for an infinite-dimensional real projective space and for various other spaces.
 
In calculating stable homotopy groups, the Adams [[Spectral sequence|spectral sequence]] is used (see [[#References|[1]]]). Up till now (1991), no stable homotopy group is known at all for any incontractible space. However, partial calculations are known for the homotopy groups of the spheres (cf. [[Spheres, homotopy groups of the|Spheres, homotopy groups of the]]), for an infinite-dimensional real projective space and for various other spaces.

Revision as of 16:00, 2 March 2022


$ k $-stable homotopy group $ \pi _ {k} ^ {s\star} ( X) $, of a topological space $ X $

The inductive limit of the sequence

$$ \tag{* } \pi _ {k} ( X) \rightarrow ^ { E } \pi _ {k+1} ( EX) \rightarrow ^ { E } \pi _ {k+2} ( E ^ {2} X) \rightarrow ^ { E } \dots , $$

where $ EY $ is the suspension over the topological space $ Y $. The suspension homomorphism $ E: \pi _ {m} ( Y) \rightarrow \pi _ {m+1} ( EY) $ relates the class of the spheroid $ f: S ^ {m} \rightarrow Y $ to the class of the spheroid $ Ef: ES ^ {m} = S ^ {m+} 1 \rightarrow EY $, where $ Ef $ is obtained by factorization from the mapping $ f \times \mathop{\rm Id} _ {( 0,1] } $. The sequence (*) stabilizes at the $ ( k+ 3) $-rd term (see [2]), so that $ \pi _ {k} ^ {s} ( X) = \pi _ {2k+2} ( E ^ {k+2} X) $.

In calculating stable homotopy groups, the Adams spectral sequence is used (see [1]). Up till now (1991), no stable homotopy group is known at all for any incontractible space. However, partial calculations are known for the homotopy groups of the spheres (cf. Spheres, homotopy groups of the), for an infinite-dimensional real projective space and for various other spaces.

References

[1] D.B. Fuks, A.T. Fomenko, V.L. Gutenmakher, "Homotopic topology" , Moscow (1969) (In Russian)
[2] J. Whitehead, "Recent advances in homotopy theory" , Amer. Math. Soc. (1970)
How to Cite This Entry:
Stable homotopy group. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Stable_homotopy_group&oldid=48798
This article was adapted from an original article by D.B. Fuks (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article