Namespaces
Variants
Actions

Difference between revisions of "Spectrum of spaces"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
Line 1: Line 1:
 +
<!--
 +
s0866201.png
 +
$#A+1 = 81 n = 2
 +
$#C+1 = 81 : ~/encyclopedia/old_files/data/S086/S.0806620 Spectrum of spaces
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
A representing object for a generalized cohomology theory. The notion was introduced in [[#References|[1]]] (cf. also [[Generalized cohomology theories|Generalized cohomology theories]]).
 
A representing object for a generalized cohomology theory. The notion was introduced in [[#References|[1]]] (cf. also [[Generalized cohomology theories|Generalized cohomology theories]]).
  
A spectrum <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086620/s0866201.png" /> of spaces is defined as a sequence of topological (as a rule cellular) spaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086620/s0866202.png" /> together with mappings <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086620/s0866203.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086620/s0866204.png" /> denotes [[Suspension|suspension]]. Spectra of spaces form a category; a morphism of a spectrum <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086620/s0866205.png" /> into a spectrum <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086620/s0866206.png" /> is, roughly speaking, the  "cofinal part"  of some function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086620/s0866207.png" /> given by a family of mappings <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086620/s0866208.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086620/s0866209.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086620/s08662010.png" /> is to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086620/s08662011.png" /> as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086620/s08662012.png" /> is to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086620/s08662013.png" />). The concepts of homotopic morphisms and homotopy equivalent spectra of spaces may be introduced, and one may construct the homotopy category of spectra [[#References|[2]]]. Postnikov systems (cf. [[Postnikov system|Postnikov system]]) of spectra of spaces have also been introduced.
+
A spectrum $  \mathbf M $
 +
of spaces is defined as a sequence of topological (as a rule cellular) spaces $  \{ M _ {n} \} _ {n= - \infty }  ^  \infty  $
 +
together with mappings $  S _ {n} : \Sigma M _ {n} \rightarrow M _ {n+} 1 $,  
 +
where $  \Sigma $
 +
denotes [[Suspension|suspension]]. Spectra of spaces form a category; a morphism of a spectrum $  \mathbf M $
 +
into a spectrum $  \mathbf N $
 +
is, roughly speaking, the  "cofinal part"  of some function $  f: \mathbf M \rightarrow \mathbf N $
 +
given by a family of mappings $  f _ {n} : M _ {n} \rightarrow N _ {n} $
 +
with $  t _ {n} \circ \Sigma f _ {n} = f _ {n+} 1 \circ s _ {n} $(
 +
$  t _ {n} $
 +
is to $  \mathbf N $
 +
as s _ {n} $
 +
is to $  \mathbf M $).  
 +
The concepts of homotopic morphisms and homotopy equivalent spectra of spaces may be introduced, and one may construct the homotopy category of spectra [[#References|[2]]]. Postnikov systems (cf. [[Postnikov system|Postnikov system]]) of spectra of spaces have also been introduced.
  
The suspension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086620/s08662014.png" /> over a spectrum of spaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086620/s08662015.png" /> is defined as the spectrum of spaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086620/s08662016.png" />. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086620/s08662017.png" />. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086620/s08662018.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086620/s08662019.png" /> are homotopically mutually inverse functors, so that in the category of spectra of spaces (in contrast to the category of spaces), the suspension functor is invertible, and this makes it convenient to work in the former. In general, in the category of spectra of spaces, all arguments connected with stability (e.g. the construction of the Adams spectral sequence) assume a natural form.
+
The suspension $  \Sigma \mathbf M $
 +
over a spectrum of spaces $  \mathbf M $
 +
is defined as the spectrum of spaces $  \Sigma \mathbf M = \{ N _ {n} \} = \{ \Sigma M _ {n} \} $.  
 +
Let $  ( \Sigma  ^ {-} 1 \mathbf M ) _ {n} = M _ {n-} 1 $.  
 +
Then $  \Sigma $
 +
and $  \Sigma  ^ {-} 1 $
 +
are homotopically mutually inverse functors, so that in the category of spectra of spaces (in contrast to the category of spaces), the suspension functor is invertible, and this makes it convenient to work in the former. In general, in the category of spectra of spaces, all arguments connected with stability (e.g. the construction of the Adams spectral sequence) assume a natural form.
  
 
===Examples of spectra of spaces.===
 
===Examples of spectra of spaces.===
  
 +
1) For any space  $  X $
 +
one can define a spectrum of spaces  $  \mathbf X = \{ M _ {n} \} $,
 +
where  $  M _ {n} = * $
 +
when  $  n< 0 $
 +
and  $  M _ {n} = \Sigma  ^ {n} X $
 +
when  $  n \geq  0 $,
 +
and  $  s _ {n} $
 +
is the natural identification  $  \Sigma ( \Sigma  ^ {n} X) \rightarrow \Sigma  ^ {n+} 1 X $.
 +
So, for  $  X = S  ^ {0} $
 +
one obtains the spectrum of spheres  $  \{ S  ^ {n} \} $.
  
1) For any space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086620/s08662020.png" /> one can define a spectrum of spaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086620/s08662021.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086620/s08662022.png" /> when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086620/s08662023.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086620/s08662024.png" /> when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086620/s08662025.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086620/s08662026.png" /> is the natural identification <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086620/s08662027.png" />. So, for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086620/s08662028.png" /> one obtains the spectrum of spheres <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086620/s08662029.png" />.
+
2) The spectrum of the Eilenberg–MacLane spaces $  H( \pi ) $(
 +
or  $  \mathbf{EM} ( \pi ) $),  
 +
where $  \pi $
 +
is an Abelian group. The homotopy equivalence  $  \omega _ {n} : K( \pi , n) \rightarrow \Omega K ( \pi , n+ 1) $,
 +
where  $  K( \pi , n) $
 +
is an [[Eilenberg–MacLane space|Eilenberg–MacLane space]] and $  \Omega X $
 +
is the [[Loop space|loop space]] over  $  X $,
 +
gives an adjoint mapping  $  s _ {n} : \Sigma K ( \pi , n) \rightarrow K ( \pi , n+ 1) $,  
 +
so that one obtains the spectrum of spaces  $  \{ K ( \pi , n), s _ {n} \} $.  
 +
This spectrum of spaces represents the ordinary cohomology theory with coefficients in  $  \pi $.
  
2) The spectrum of the Eilenberg–MacLane spaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086620/s08662030.png" /> (or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086620/s08662031.png" />), where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086620/s08662032.png" /> is an Abelian group. The homotopy equivalence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086620/s08662033.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086620/s08662034.png" /> is an [[Eilenberg–MacLane space|Eilenberg–MacLane space]] and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086620/s08662035.png" /> is the [[Loop space|loop space]] over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086620/s08662036.png" />, gives an adjoint mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086620/s08662037.png" />, so that one obtains the spectrum of spaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086620/s08662038.png" />. This spectrum of spaces represents the ordinary cohomology theory with coefficients in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086620/s08662039.png" />.
+
3) Let $  X $
 
+
be a space such that $  \Omega  ^ {d} X \simeq X $
3) Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086620/s08662040.png" /> be a space such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086620/s08662041.png" /> for some <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086620/s08662042.png" />. For <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086620/s08662043.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086620/s08662044.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086620/s08662045.png" />, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086620/s08662046.png" />. There arises a sequence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086620/s08662047.png" /> of the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086620/s08662048.png" />. As in example 2), the homotopy equivalence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086620/s08662049.png" /> gives a mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086620/s08662050.png" />, so that one obtains a spectrum of spaces. E.g., for the [[Classifying space|classifying space]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086620/s08662051.png" />, where the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086620/s08662052.png" /> are unitary groups, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086620/s08662053.png" /> (Bott's periodicity theorem), and one obtains the spectrum of spaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086620/s08662054.png" /> representing complex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086620/s08662055.png" />-theory. An analogous result holds for real <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086620/s08662056.png" />-theory (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086620/s08662057.png" />).
+
for some $  d $.  
 +
For $  n= ad+ b $,  
 +
0\leq  b \leq  d $,  
 +
$  a \in \mathbf Z $,  
 +
let $  M _ {n} = \Omega  ^ {d-} b X $.  
 +
There arises a sequence $  \{ M _ {n} \} $
 +
of the form $  \{ \dots, X, \Omega  ^ {d-} 1 X , \Omega  ^ {d-} 2 X \dots \Omega  ^ {1} X , X \simeq \Omega  ^ {d} X ,\dots \} $.  
 +
As in example 2), the homotopy equivalence $  \omega : M _ {n} \rightarrow \Omega M _ {n+} 1 $
 +
gives a mapping $  s _ {n} : \Sigma M _ {n} \rightarrow M _ {n+} 1 $,  
 +
so that one obtains a spectrum of spaces. E.g., for the [[Classifying space|classifying space]] $  \mathop{\rm BU} = \lim\limits  \mathop{\rm BU} _ {n} $,  
 +
where the $  \textrm{ U } _ {n} $
 +
are unitary groups, $  \Omega  ^ {2} (  \mathop{\rm BU} \times \mathbf Z ) \simeq  \mathop{\rm BU} \times \mathbf Z $(
 +
Bott's periodicity theorem), and one obtains the spectrum of spaces $  \{ \dots, U,  \mathop{\rm BU} \times \mathbf Z , U,  \mathop{\rm BU} \times \mathbf Z ,\dots \} $
 +
representing complex $  K $-
 +
theory. An analogous result holds for real $  K $-
 +
theory ( $  \Omega  ^ {8} (  \mathop{\rm BO} \times \mathbf Z _ {2} ) \simeq  \mathop{\rm BO} \times \mathbf Z _ {2} $).
  
 
4) Various Thom spectra (cf. [[Thom spectrum|Thom spectrum]]), representing [[Cobordism|cobordism]] theories.
 
4) Various Thom spectra (cf. [[Thom spectrum|Thom spectrum]]), representing [[Cobordism|cobordism]] theories.
  
Given two spectra of spaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086620/s08662058.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086620/s08662059.png" />, one can define their reduced product <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086620/s08662060.png" /> (an analogue of the usual reduced product of spaces). A multiplication on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086620/s08662061.png" /> is defined as a morphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086620/s08662062.png" /> which is associative (in the appropriate sense). A spectrum of spaces equipped with a multiplication is called a ring spectrum, or multiplicative spectrum, and the cohomology theory represented by it is multiplicative. Attempts to overcome the difficulties connected with the  "poor associativity"  of the above multiplication have led to a revision of the foundations of the theory of spectra of spaces. Namely, the concept of a coordinate-free spectrum of spaces is introduced as a family of spaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086620/s08662063.png" /> (and corresponding mappings) indexed by linear subspaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086620/s08662064.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086620/s08662065.png" />. The category of coordinate-free spectra of spaces is isomorphic to the category of ordinary spectra of spaces, but the pairing <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086620/s08662066.png" /> in it is easier to control, and so it plays an important role in the examination of subtle geometric questions connected with the higher structures of spectra of spaces, with orientations in cohomology theory, and elsewhere.
+
Given two spectra of spaces $  \mathbf M $
 +
and $  \mathbf N $,  
 +
one can define their reduced product $  \mathbf M \wedge \mathbf N $(
 +
an analogue of the usual reduced product of spaces). A multiplication on $  \mathbf M $
 +
is defined as a morphism $  \mathbf M \wedge \mathbf M \rightarrow \mathbf M $
 +
which is associative (in the appropriate sense). A spectrum of spaces equipped with a multiplication is called a ring spectrum, or multiplicative spectrum, and the cohomology theory represented by it is multiplicative. Attempts to overcome the difficulties connected with the  "poor associativity"  of the above multiplication have led to a revision of the foundations of the theory of spectra of spaces. Namely, the concept of a coordinate-free spectrum of spaces is introduced as a family of spaces $  \{ M _ {V} \} $(
 +
and corresponding mappings) indexed by linear subspaces $  V $
 +
of $  \mathbf R  ^  \infty  = \lim\limits _ {n \rightarrow \infty }  \mathbf R  ^ {n} $.  
 +
The category of coordinate-free spectra of spaces is isomorphic to the category of ordinary spectra of spaces, but the pairing $  \wedge $
 +
in it is easier to control, and so it plays an important role in the examination of subtle geometric questions connected with the higher structures of spectra of spaces, with orientations in cohomology theory, and elsewhere.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  E.L. Lima,  "The Spanier–Whitehead duality in new homotopy categories"  ''Summa Brasiliens. Math.'' , '''4'''  (1959)  pp. 91–148</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  R.M. Switzer,  "Algebraic topology - homotopy and homology" , Springer  (1975)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  J.F. Adams,  "Infinite loop spaces" , Princeton Univ. Press  (1978)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  M. Flato,  "Deformation view of physical theories"  ''Czechoslovak J. Phys.'' , '''B32'''  (1982)  pp. 472–475</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  J.P. May,  "<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086620/s08662067.png" />-ring spaces and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086620/s08662068.png" />-ring spectra" , ''Lect. notes in math.'' , '''577''' , Springer  (1977)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  E.L. Lima,  "The Spanier–Whitehead duality in new homotopy categories"  ''Summa Brasiliens. Math.'' , '''4'''  (1959)  pp. 91–148</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  R.M. Switzer,  "Algebraic topology - homotopy and homology" , Springer  (1975)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  J.F. Adams,  "Infinite loop spaces" , Princeton Univ. Press  (1978)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  M. Flato,  "Deformation view of physical theories"  ''Czechoslovak J. Phys.'' , '''B32'''  (1982)  pp. 472–475</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  J.P. May,  "<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086620/s08662067.png" />-ring spaces and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086620/s08662068.png" />-ring spectra" , ''Lect. notes in math.'' , '''577''' , Springer  (1977)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
For the cohomology and homology theory defined by a spectrum see [[Generalized cohomology theories|Generalized cohomology theories]]; for the adjointness of suspension and loop, and hence the canonical mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086620/s08662069.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086620/s08662070.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086620/s08662071.png" />, see [[Suspension|Suspension]].
+
For the cohomology and homology theory defined by a spectrum see [[Generalized cohomology theories|Generalized cohomology theories]]; for the adjointness of suspension and loop, and hence the canonical mapping $  X \rightarrow \Omega \Sigma X $,
 +
$  x \mapsto \omega _ {x} $,  
 +
$  \omega _ {x} ( t)=( x, t) $,  
 +
see [[Suspension|Suspension]].
  
A mapping of spectra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086620/s08662072.png" /> is defined by individual continuous mappings <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086620/s08662073.png" /> (or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086620/s08662074.png" /> for a mapping of spectra of degree <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086620/s08662076.png" />). Applying the [[Mapping-cone construction|mapping-cone construction]] and [[Mapping cylinder|mapping cylinder]] construction to these individual mappings defines the mapping cone of a mapping of spectra and the mapping cylinder of a mapping of spectra.
+
A mapping of spectra $  f: \mathbf M \rightarrow \mathbf N $
 +
is defined by individual continuous mappings $  f _ {n} : M _ {n} \rightarrow N _ {n} $(
 +
or $  M _ {n} \rightarrow N _ {n-} r $
 +
for a mapping of spectra of degree $  r $).  
 +
Applying the [[Mapping-cone construction|mapping-cone construction]] and [[Mapping cylinder|mapping cylinder]] construction to these individual mappings defines the mapping cone of a mapping of spectra and the mapping cylinder of a mapping of spectra.
  
A spectrum <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086620/s08662077.png" /> is an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086620/s08662079.png" />-spectrum if the mappings <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086620/s08662080.png" /> (adjoint to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086620/s08662081.png" />) are weak homotopy equivalences.
+
A spectrum $  \mathbf M $
 +
is an $  \Omega $-
 +
spectrum if the mappings $  s _ {n}  ^  \prime  : M _ {n} \rightarrow \Omega M _ {n+} 1 $(
 +
adjoint to $  s _ {n} : \Sigma M _ {n} \rightarrow M _ {n+} 1 $)  
 +
are weak homotopy equivalences.
  
Often, a CW-spectrum is defined as a sequence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086620/s08662082.png" /> of CW-complexes <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086620/s08662083.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086620/s08662084.png" /> is (or, is homotopic to) a subcomplex of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086620/s08662085.png" />.
+
Often, a CW-spectrum is defined as a sequence $  \{ M _ {n} \} $
 +
of CW-complexes $  M _ {n} $
 +
such that $  \Sigma M _ {n} $
 +
is (or, is homotopic to) a subcomplex of $  M _ {n+} 1 $.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  B. Eckmann,  "Homotopy and cohomology theory" , ''Proc. Internat. Congress Mathematicians (Stockholm, 1962)'' , Almqvist &amp; Wiksells  (1963)  pp. 59–75</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  E.H. Brown,  "Cohomology theories"  ''Ann. of Math.'' , '''75'''  (1962)  pp. 467–484</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  G.W. Whitehead,  "Generalized homology theories"  ''Trans. Amer. Math. Soc.'' , '''102'''  (1962)  pp. 227–238</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  B. Eckmann,  "Homotopy and cohomology theory" , ''Proc. Internat. Congress Mathematicians (Stockholm, 1962)'' , Almqvist &amp; Wiksells  (1963)  pp. 59–75</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  E.H. Brown,  "Cohomology theories"  ''Ann. of Math.'' , '''75'''  (1962)  pp. 467–484</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  G.W. Whitehead,  "Generalized homology theories"  ''Trans. Amer. Math. Soc.'' , '''102'''  (1962)  pp. 227–238</TD></TR></table>

Revision as of 08:22, 6 June 2020


A representing object for a generalized cohomology theory. The notion was introduced in [1] (cf. also Generalized cohomology theories).

A spectrum $ \mathbf M $ of spaces is defined as a sequence of topological (as a rule cellular) spaces $ \{ M _ {n} \} _ {n= - \infty } ^ \infty $ together with mappings $ S _ {n} : \Sigma M _ {n} \rightarrow M _ {n+} 1 $, where $ \Sigma $ denotes suspension. Spectra of spaces form a category; a morphism of a spectrum $ \mathbf M $ into a spectrum $ \mathbf N $ is, roughly speaking, the "cofinal part" of some function $ f: \mathbf M \rightarrow \mathbf N $ given by a family of mappings $ f _ {n} : M _ {n} \rightarrow N _ {n} $ with $ t _ {n} \circ \Sigma f _ {n} = f _ {n+} 1 \circ s _ {n} $( $ t _ {n} $ is to $ \mathbf N $ as $ s _ {n} $ is to $ \mathbf M $). The concepts of homotopic morphisms and homotopy equivalent spectra of spaces may be introduced, and one may construct the homotopy category of spectra [2]. Postnikov systems (cf. Postnikov system) of spectra of spaces have also been introduced.

The suspension $ \Sigma \mathbf M $ over a spectrum of spaces $ \mathbf M $ is defined as the spectrum of spaces $ \Sigma \mathbf M = \{ N _ {n} \} = \{ \Sigma M _ {n} \} $. Let $ ( \Sigma ^ {-} 1 \mathbf M ) _ {n} = M _ {n-} 1 $. Then $ \Sigma $ and $ \Sigma ^ {-} 1 $ are homotopically mutually inverse functors, so that in the category of spectra of spaces (in contrast to the category of spaces), the suspension functor is invertible, and this makes it convenient to work in the former. In general, in the category of spectra of spaces, all arguments connected with stability (e.g. the construction of the Adams spectral sequence) assume a natural form.

Examples of spectra of spaces.

1) For any space $ X $ one can define a spectrum of spaces $ \mathbf X = \{ M _ {n} \} $, where $ M _ {n} = * $ when $ n< 0 $ and $ M _ {n} = \Sigma ^ {n} X $ when $ n \geq 0 $, and $ s _ {n} $ is the natural identification $ \Sigma ( \Sigma ^ {n} X) \rightarrow \Sigma ^ {n+} 1 X $. So, for $ X = S ^ {0} $ one obtains the spectrum of spheres $ \{ S ^ {n} \} $.

2) The spectrum of the Eilenberg–MacLane spaces $ H( \pi ) $( or $ \mathbf{EM} ( \pi ) $), where $ \pi $ is an Abelian group. The homotopy equivalence $ \omega _ {n} : K( \pi , n) \rightarrow \Omega K ( \pi , n+ 1) $, where $ K( \pi , n) $ is an Eilenberg–MacLane space and $ \Omega X $ is the loop space over $ X $, gives an adjoint mapping $ s _ {n} : \Sigma K ( \pi , n) \rightarrow K ( \pi , n+ 1) $, so that one obtains the spectrum of spaces $ \{ K ( \pi , n), s _ {n} \} $. This spectrum of spaces represents the ordinary cohomology theory with coefficients in $ \pi $.

3) Let $ X $ be a space such that $ \Omega ^ {d} X \simeq X $ for some $ d $. For $ n= ad+ b $, $ 0\leq b \leq d $, $ a \in \mathbf Z $, let $ M _ {n} = \Omega ^ {d-} b X $. There arises a sequence $ \{ M _ {n} \} $ of the form $ \{ \dots, X, \Omega ^ {d-} 1 X , \Omega ^ {d-} 2 X \dots \Omega ^ {1} X , X \simeq \Omega ^ {d} X ,\dots \} $. As in example 2), the homotopy equivalence $ \omega : M _ {n} \rightarrow \Omega M _ {n+} 1 $ gives a mapping $ s _ {n} : \Sigma M _ {n} \rightarrow M _ {n+} 1 $, so that one obtains a spectrum of spaces. E.g., for the classifying space $ \mathop{\rm BU} = \lim\limits \mathop{\rm BU} _ {n} $, where the $ \textrm{ U } _ {n} $ are unitary groups, $ \Omega ^ {2} ( \mathop{\rm BU} \times \mathbf Z ) \simeq \mathop{\rm BU} \times \mathbf Z $( Bott's periodicity theorem), and one obtains the spectrum of spaces $ \{ \dots, U, \mathop{\rm BU} \times \mathbf Z , U, \mathop{\rm BU} \times \mathbf Z ,\dots \} $ representing complex $ K $- theory. An analogous result holds for real $ K $- theory ( $ \Omega ^ {8} ( \mathop{\rm BO} \times \mathbf Z _ {2} ) \simeq \mathop{\rm BO} \times \mathbf Z _ {2} $).

4) Various Thom spectra (cf. Thom spectrum), representing cobordism theories.

Given two spectra of spaces $ \mathbf M $ and $ \mathbf N $, one can define their reduced product $ \mathbf M \wedge \mathbf N $( an analogue of the usual reduced product of spaces). A multiplication on $ \mathbf M $ is defined as a morphism $ \mathbf M \wedge \mathbf M \rightarrow \mathbf M $ which is associative (in the appropriate sense). A spectrum of spaces equipped with a multiplication is called a ring spectrum, or multiplicative spectrum, and the cohomology theory represented by it is multiplicative. Attempts to overcome the difficulties connected with the "poor associativity" of the above multiplication have led to a revision of the foundations of the theory of spectra of spaces. Namely, the concept of a coordinate-free spectrum of spaces is introduced as a family of spaces $ \{ M _ {V} \} $( and corresponding mappings) indexed by linear subspaces $ V $ of $ \mathbf R ^ \infty = \lim\limits _ {n \rightarrow \infty } \mathbf R ^ {n} $. The category of coordinate-free spectra of spaces is isomorphic to the category of ordinary spectra of spaces, but the pairing $ \wedge $ in it is easier to control, and so it plays an important role in the examination of subtle geometric questions connected with the higher structures of spectra of spaces, with orientations in cohomology theory, and elsewhere.

References

[1] E.L. Lima, "The Spanier–Whitehead duality in new homotopy categories" Summa Brasiliens. Math. , 4 (1959) pp. 91–148
[2] R.M. Switzer, "Algebraic topology - homotopy and homology" , Springer (1975)
[3] J.F. Adams, "Infinite loop spaces" , Princeton Univ. Press (1978)
[4] M. Flato, "Deformation view of physical theories" Czechoslovak J. Phys. , B32 (1982) pp. 472–475
[5] J.P. May, "-ring spaces and -ring spectra" , Lect. notes in math. , 577 , Springer (1977)

Comments

For the cohomology and homology theory defined by a spectrum see Generalized cohomology theories; for the adjointness of suspension and loop, and hence the canonical mapping $ X \rightarrow \Omega \Sigma X $, $ x \mapsto \omega _ {x} $, $ \omega _ {x} ( t)=( x, t) $, see Suspension.

A mapping of spectra $ f: \mathbf M \rightarrow \mathbf N $ is defined by individual continuous mappings $ f _ {n} : M _ {n} \rightarrow N _ {n} $( or $ M _ {n} \rightarrow N _ {n-} r $ for a mapping of spectra of degree $ r $). Applying the mapping-cone construction and mapping cylinder construction to these individual mappings defines the mapping cone of a mapping of spectra and the mapping cylinder of a mapping of spectra.

A spectrum $ \mathbf M $ is an $ \Omega $- spectrum if the mappings $ s _ {n} ^ \prime : M _ {n} \rightarrow \Omega M _ {n+} 1 $( adjoint to $ s _ {n} : \Sigma M _ {n} \rightarrow M _ {n+} 1 $) are weak homotopy equivalences.

Often, a CW-spectrum is defined as a sequence $ \{ M _ {n} \} $ of CW-complexes $ M _ {n} $ such that $ \Sigma M _ {n} $ is (or, is homotopic to) a subcomplex of $ M _ {n+} 1 $.

References

[a1] B. Eckmann, "Homotopy and cohomology theory" , Proc. Internat. Congress Mathematicians (Stockholm, 1962) , Almqvist & Wiksells (1963) pp. 59–75
[a2] E.H. Brown, "Cohomology theories" Ann. of Math. , 75 (1962) pp. 467–484
[a3] G.W. Whitehead, "Generalized homology theories" Trans. Amer. Math. Soc. , 102 (1962) pp. 227–238
How to Cite This Entry:
Spectrum of spaces. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Spectrum_of_spaces&oldid=12104
This article was adapted from an original article by Yu.B. Rudyak (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article