Namespaces
Variants
Actions

Difference between revisions of "Special functions"

From Encyclopedia of Mathematics
Jump to: navigation, search
(→‎References: Feller: internal link)
(20 intermediate revisions by the same user not shown)
Line 4: Line 4:
 
In the broad sense, a set of several classes of functions that arise in the solution of both theoretical and applied problems in various branches of mathematics.
 
In the broad sense, a set of several classes of functions that arise in the solution of both theoretical and applied problems in various branches of mathematics.
  
In the narrow sense, special functions are the special functions of mathematical physics, which arise when solving partial differential equations by the
+
In the narrow sense, the special functions of mathematical physics, which arise when solving partial differential equations by the
 
[[Separation of variables, method of|method of separation of variables]].
 
[[Separation of variables, method of|method of separation of variables]].
  
Line 10: Line 10:
  
 
The most important classes of special functions are the following: the
 
The most important classes of special functions are the following: the
[[Gamma-function|gamma-function]] and the
+
[[Gamma-function|gamma function]] and the
[[Beta-function|beta-function]];  
+
[[Beta-function|beta function]];  
 
[[Hypergeometric function|hypergeometric functions]] and
 
[[Hypergeometric function|hypergeometric functions]] and
 
[[Confluent hypergeometric function|confluent hypergeometric functions]];
 
[[Confluent hypergeometric function|confluent hypergeometric functions]];
Line 19: Line 19:
 
[[Integral sine|integral sine]] and
 
[[Integral sine|integral sine]] and
 
[[Integral cosine|integral cosine]] functions;
 
[[Integral cosine|integral cosine]] functions;
[[Incomplete gamma-function|incomplete gamma-]] and
+
[[Incomplete gamma-function|incomplete gamma functions]] and
[[Incomplete beta-function|beta-functions]];
+
[[Incomplete beta-function|incomplete beta functions]];
 
[[Probability integral|probability integrals]]; various classes of
 
[[Probability integral|probability integrals]]; various classes of
 
[[Orthogonal polynomials|orthogonal polynomials]] in one or several variables;
 
[[Orthogonal polynomials|orthogonal polynomials]] in one or several variables;
 
[[Elliptic function|elliptic functions]] and
 
[[Elliptic function|elliptic functions]] and
[[Elliptic integral|integrals]];
+
[[Elliptic integral|elliptic integrals]];
 
[[Lamé function|Lamé functions]] and
 
[[Lamé function|Lamé functions]] and
 
[[Mathieu functions]]; the
 
[[Mathieu functions]]; the
[[Riemann zeta-function]];
+
[[Riemann zeta-function|Riemann zeta function]];
 
[[Automorphic function|automorphic functions]]; and some special functions of a discrete argument.
 
[[Automorphic function|automorphic functions]]; and some special functions of a discrete argument.
  
The theory of special functions is connected with the representation of groups (cf.
+
The theory of special functions is connected with group representations (cf.
[[Representation theory]]), with methods of integral representations based on the generalization of the
+
[[Representation theory|representation theory]]), with methods of integral representations based on the generalization of the
 
[[Rodrigues formula]] for classical orthogonal polynomials, and with methods in
 
[[Rodrigues formula]] for classical orthogonal polynomials, and with methods in
 
[[Probability theory|probability theory]].
 
[[Probability theory|probability theory]].
  
There are tables of values of special functions and also tables of integrals and series.
+
There are software libraries for computation of special functions, and also tables of integrals, series and other formulas for special functions. See in particular {{Cite|Olv}}.
  
 
====Comments====
 
====Comments====
Line 45: Line 45:
  
 
Many special functions have so-called $q$-analogues, $q$-special functions. That means, roughly, that it is possible to insert a parameter $q$ to obtain a family of special functions in such a way that many of the characteristic properties of special functions are retained. These $q$-special functions correspond to
 
Many special functions have so-called $q$-analogues, $q$-special functions. That means, roughly, that it is possible to insert a parameter $q$ to obtain a family of special functions in such a way that many of the characteristic properties of special functions are retained. These $q$-special functions correspond to
[[Quantum groups|quantum groups]] in the same way that special functions relate to Lie groups. Cf. the recent survey
+
[[Quantum groups|quantum groups]] in the same way that special functions relate to Lie groups. Cf. the survey
{{Cite|Ko}}, and
+
{{Cite|Ko}}, and {{Cite|ViKl}}, vols. 2–3, for more details.
{{Cite|ViKl}}, vols. 2–3, for more details.
 
  
  
Line 53: Line 52:
 
{|
 
{|
 
|-
 
|-
|valign="top"|{{Ref|AbSt}}||valign="top"| M. Abramowitz,   I.A. Stegun,   "Handbook of mathematical functions", Dover, reprint  (1970)  {{MR|0415962}}  {{ZBL|0643.33002}} {{ZBL|0643.33001}} {{ZBL|0515.33001}} {{ZBL|0543.33001}} {{ZBL|0171.38503}}  
+
|valign="top"|{{Ref|AnAsRo}}||valign="top"| G.E. Andrews, R. Askey, R. Roy, ''Special functions'', Cambridge Univ. Press (1999)  {{MR|1688958}} {{ZBL|0920.33001}}
 
|-
 
|-
|valign="top"|{{Ref|Er}}||valign="top"| A. Erdélyi et al. (ed.), ''Higher transcendental functions'', '''1–3''', McGraw-Hill  (1953–1955)  {{MR|0058756}} {{ZBL|0052.29502}} {{ZBL|0051.30303}}  
+
|valign="top"|{{Ref|Er}}||valign="top"| A. Erdélyi et al. (ed.), ''Higher transcendental functions'', '''1–3''', McGraw-Hill  (1953–1955)  {{MR|0058756}} {{MR|0066496}} {{ZBL|0051.30303}} {{ZBL|0052.29502}} {{ZBL|0064.06302 }}
 
|-
 
|-
|valign="top"|{{Ref|Fe}}||valign="top"|  W. Feller, [[Feller, "An introduction to probability theory and its applications"|"An introduction to probability theory and its  applications"]], '''1–2''', Wiley  (1957–1971)  
+
|valign="top"|{{Ref|Fe}}||valign="top"|  W. Feller, "An introduction to probability theory and its applications", '''1''', third ed. (1968), '''2''', second ed. (1971), Wiley {{MR|0228020}} {{MR|0270403}} {{ZBL|0155.23101}} {{ZBL|0219.60003}}
 
|-
 
|-
|valign="top"|{{Ref|GrRy}}||valign="top"|  I.S. Gradshtein,  I.M. Ryzhik,  "Table of integrals, series and products", Acad. Press  (1980)  (Translated from Russian)  {{MR|0582453}}   
+
|valign="top"|{{Ref|GrRy}}||valign="top"|  I.S. Gradshteyn,  I.M. Ryzhik,  "Table of integrals, series and products", Elsevier/Acad. Press, seventh ed. (2007)  (Translated from Russian. Translation edited and with a preface by Alan Jeffrey and Daniel  Zwillinger)  {{MR|2360010}}  {{ZBL|1208.65001}}
 
|-
 
|-
|valign="top"|{{Ref|Ho}}||valign="top"|  E.W. Hobson,  "The theory of spherical and ellipsoidal harmonics", Cambridge Univ. Press  (1931)  {{MR|0064922}} {{MR|1522948}}  {{ZBL|0004.21001}} JFM {{ZBL|57.0405.06}}
+
|valign="top"|{{Ref|Ho}}||valign="top"|  E.W. Hobson,  "The theory of spherical and ellipsoidal harmonics", Cambridge Univ. Press  (1931)  {{MR|0064922}} {{MR|1522948}}  {{ZBL|0004.21001}} [http://www.zentralblatt-math.org/zbmath/search/?q=an%3A57.0405.06 JFM 57.0405.06]
 
|-
 
|-
|valign="top"|{{Ref|JaEmLö}}||valign="top"|  E. Jahnke,  F. Emde,  F. Lösch,  "Tafeln höheren Funktionen", Teubner (1966)  
+
|valign="top"|{{Ref|Ko}}||valign="top"|  H.T. Koelink,  "Askey-Wilson polynomials and the quantum SU(2) group: survey  and applications" ''Acta Appl. Math.'', '''44''' (1996) pp. 295–352  {{MR|1407326}}{{ZBL|0865.33013}}
 
|-
 
|-
|valign="top"|{{Ref|Ko}}||valign="top"|  T.H. Koornwinder,  "Orthogonal polynomials in connection with quantum groups"  P. Nevai (ed.), ''Orthogonal polynomials: theory and practice'', Kluwer  (1990)  pp. 257–292  {{MR|2281172}} 
+
|valign="top"|{{Ref|Le}}||valign="top"|  N.N. Lebedev,  "Special functions and their applications", Prentice-Hall  (1965)  (Translated from Russian)  {{MR|0174795}} {{MR|0350075}} {{ZBL|0131.07002}}  
|-
 
|valign="top"|{{Ref|KrFr}}||valign="top"|  A. Krazer,  W. Franz,  "Transzendente Funktionen", Akademie Verlag  (1960) 
 
|-
 
|valign="top"|{{Ref|Le}}||valign="top"|  N.N. Lebedev,  "Special functions and their applications", Prentice-Hall  (1965)  (Translated from Russian)  {{MR|0174795}} {{ZBL|0131.07002}}  
 
 
|-
 
|-
 
|valign="top"|{{Ref|Mi}}||valign="top"|  W. Miller jr.,  "Lie theory and special functions", Acad. Press  (1968)  {{MR|0264140}}  {{ZBL|0174.10502}}  
 
|valign="top"|{{Ref|Mi}}||valign="top"|  W. Miller jr.,  "Lie theory and special functions", Acad. Press  (1968)  {{MR|0264140}}  {{ZBL|0174.10502}}  
Line 75: Line 70:
 
|valign="top"|{{Ref|NiUf}}||valign="top"|  A.F. Nikiforov,  V.B. Ufarov,  "Special functions of mathematical physics", Birkhäuser  (1988)  (Translated from Russian)  {{MR|0922041}}  {{ZBL|0624.33001}}  
 
|valign="top"|{{Ref|NiUf}}||valign="top"|  A.F. Nikiforov,  V.B. Ufarov,  "Special functions of mathematical physics", Birkhäuser  (1988)  (Translated from Russian)  {{MR|0922041}}  {{ZBL|0624.33001}}  
 
|-
 
|-
|valign="top"|{{Ref|PrBrMa}}||valign="top"| A.P. Prudnikov,  Yu.A. Brychkov,  O.I. Marichev,   "Integrals and series. Elementary functions", Gordon & Breach (1986) (Translated from Russian)  {{MR|0888165}} {{MR|0874987}} {{MR|0874986}}  {{ZBL|0511.00044}}  
+
|valign="top"|{{Ref|Olv}}||valign="top"| F.W.J. Olver et al., "NIST handbook of  mathematical functions", Cambridge Univ. Press (2010)   {{MR|2723248}} {{ZBL|1198.00002}}; online version: [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions (DLMF)]
|-
 
|valign="top"|{{Ref|PrBrMa2}}||valign="top"|  A.P. Prudnikov,  Yu.A. Brychkov,  O.I. Marichev,  "Integrals and series. Special functions", Gordon & Breach (1986) (Translated from Russian)  {{MR|0888165}} {{MR|0874987}} {{MR|0874986}}  {{ZBL|0626.00033}} {{ZBL|0733.00004}}
 
 
|-
 
|-
|valign="top"|{{Ref|PrBrMa3}}||valign="top"|  A.P. Prudnikov,   Yu.A. Brychkov,  O.I. Marichev,  "Integrals and series. Additional chapters", Gordon & Breach  (1987)  (Translated from Russian) {{MR|1162980}} {{MR|1162979}} {{MR|1054647}}  
+
|valign="top"|{{Ref|PrBrMa}}||valign="top"|  A.P. Prudnikov,   Yu.A. Brychkov,  O.I. Marichev,  "Integrals and series", '''1–5''', Gordon & Breach  (1986–1992)  (Translated from Russian)   {{MR|0874986}}    {{MR|0950173}} {{MR|1054647}} {{MR|1162979}} {{MR|1162980}} {{ZBL|0733.00004}} {{ZBL|0733.00005}} {{ZBL|0967.00503}} {{ZBL|0786.44003}} {{ZBL|0781.44002}}
 
|-
 
|-
 
|valign="top"|{{Ref|SrKa}}||valign="top"|  H.M. Srivastava,  B.R.K. Kashyap,  "Special functions in queuing theory", Acad. Press  (1982)  {{MR|0657766}}  {{ZBL|0492.60089}}  
 
|valign="top"|{{Ref|SrKa}}||valign="top"|  H.M. Srivastava,  B.R.K. Kashyap,  "Special functions in queuing theory", Acad. Press  (1982)  {{MR|0657766}}  {{ZBL|0492.60089}}  
 
|-
 
|-
|valign="top"|{{Ref|Sz}}||valign="top"|  G. Szegö,  "Orthogonal polynomials", Amer. Math. Soc. (1975) {{MR|0310533}}  
+
|valign="top"|{{Ref|Sz}}||valign="top"|  G. Szegö,  "Orthogonal polynomials", Amer. Math. Soc., fourth ed. (1975) {{MR|0372517}}  {{ZBL|0305.42011}}  
 
|-
 
|-
 
|valign="top"|{{Ref|Vi}}||valign="top"|  N.Ya. Vilenkin,  "Special functions and the theory of group representations", Amer. Math. Soc.  (1968)  (Translated from Russian)  {{MR|0229863}}  {{ZBL|0172.18404}}  
 
|valign="top"|{{Ref|Vi}}||valign="top"|  N.Ya. Vilenkin,  "Special functions and the theory of group representations", Amer. Math. Soc.  (1968)  (Translated from Russian)  {{MR|0229863}}  {{ZBL|0172.18404}}  
 
|-
 
|-
|valign="top"|{{Ref|ViKl}}||valign="top"|  N.Ya. Vilenkin,   A.U. Klimyk,   "Representations of Lie groups, special functions and integral transforms", '''1–3''', Kluwer  (1991-) (Translated from Russian)  
+
|valign="top"|{{Ref|ViKl}}||valign="top"|  N.Ja. Vilenkin, A.U. Klimyk, "Representation of Lie groups and special functions", '''1–3''', Kluwer  (1991–1993) (Translated from Russian) {{MR|1143783}} {{MR|1220225}} {{MR|1206906}} {{ZBL|0742.22001}} {{ZBL|0809.22001}} {{ZBL|0778.22001}}
 
|-
 
|-
|valign="top"|{{Ref|Wa}}||valign="top"|  G.N. Watson,  "A treatise on the theory of Bessel functions", '''1–2''', Cambridge Univ. Press (1952)  {{MR|1349110}} {{ZBL|0849.33001}}  
+
|valign="top"|{{Ref|Wa}}||valign="top"|  G.N. Watson,  "A treatise on the theory of Bessel functions", Cambridge Univ. Press, second ed. (1944), reprinted (1995)  {{MR|1349110}} {{ZBL|0849.33001}}  
 
|-
 
|-
 
|valign="top"|{{Ref|Wa2}}||valign="top"|  A. Wawrzyńczyk,  "Group representations and special functions", Reidel  (1984)  {{MR|0750113}}  {{ZBL|0545.43001}}  
 
|valign="top"|{{Ref|Wa2}}||valign="top"|  A. Wawrzyńczyk,  "Group representations and special functions", Reidel  (1984)  {{MR|0750113}}  {{ZBL|0545.43001}}  
 
|-
 
|-
|valign="top"|{{Ref|WhWa}}||valign="top"|  E.T. Whittaker,  G.N. Watson,  "A course of modern analysis", Cambridge Univ. Press (1952) pp. Chapt. 6  {{MR|1424469}} {{ZBL|0951.30002}}  
+
|valign="top"|{{Ref|WhWa}}||valign="top"|  E.T. Whittaker,  G.N. Watson,  "A course of modern analysis", Cambridge Univ. Press, fourth ed. (1962), reprinted (1996) {{MR|1424469}} {{ZBL|0951.30002}}  
 
|-
 
|-
 
|}
 
|}

Revision as of 11:06, 14 May 2012

2020 Mathematics Subject Classification: Primary: 33-XX [MSN][ZBL]

In the broad sense, a set of several classes of functions that arise in the solution of both theoretical and applied problems in various branches of mathematics.

In the narrow sense, the special functions of mathematical physics, which arise when solving partial differential equations by the method of separation of variables.

Special functions can be defined by means of power series, generating functions, infinite products, repeated differentiation, integral representations, differential, difference, integral, and functional equations, trigonometric series, or other series in orthogonal functions.

The most important classes of special functions are the following: the gamma function and the beta function; hypergeometric functions and confluent hypergeometric functions; Bessel functions; Legendre functions; parabolic cylinder functions; integral sine and integral cosine functions; incomplete gamma functions and incomplete beta functions; probability integrals; various classes of orthogonal polynomials in one or several variables; elliptic functions and elliptic integrals; Lamé functions and Mathieu functions; the Riemann zeta function; automorphic functions; and some special functions of a discrete argument.

The theory of special functions is connected with group representations (cf. representation theory), with methods of integral representations based on the generalization of the Rodrigues formula for classical orthogonal polynomials, and with methods in probability theory.

There are software libraries for computation of special functions, and also tables of integrals, series and other formulas for special functions. See in particular [Olv].

Comments

Given a Lie group $G$ and a (matrix) representation $\rho$ of it, one can regard the matrix coefficients of $\rho$ as functions on $G$. Many special functions can be seen as arising essentially in this way, and this point of view "explains" many of the special properties of special functions, e.g. various orthogonality relations. Cf. [Vi], [Mi], [Wa2], and the encyclopaedic treatment [ViKl], vol. 1, for more details.

Many special functions have so-called $q$-analogues, $q$-special functions. That means, roughly, that it is possible to insert a parameter $q$ to obtain a family of special functions in such a way that many of the characteristic properties of special functions are retained. These $q$-special functions correspond to quantum groups in the same way that special functions relate to Lie groups. Cf. the survey [Ko], and [ViKl], vols. 2–3, for more details.


References

[AnAsRo] G.E. Andrews, R. Askey, R. Roy, Special functions, Cambridge Univ. Press (1999) MR1688958 Zbl 0920.33001
[Er] A. Erdélyi et al. (ed.), Higher transcendental functions, 1–3, McGraw-Hill (1953–1955) MR0058756 MR0066496 Zbl 0051.30303 Zbl 0052.29502 Zbl 0064.06302
[Fe] W. Feller, "An introduction to probability theory and its applications", 1, third ed. (1968), 2, second ed. (1971), Wiley MR0228020 MR0270403 Zbl 0155.23101 Zbl 0219.60003
[GrRy] I.S. Gradshteyn, I.M. Ryzhik, "Table of integrals, series and products", Elsevier/Acad. Press, seventh ed. (2007) (Translated from Russian. Translation edited and with a preface by Alan Jeffrey and Daniel Zwillinger) MR2360010 Zbl 1208.65001
[Ho] E.W. Hobson, "The theory of spherical and ellipsoidal harmonics", Cambridge Univ. Press (1931) MR0064922 MR1522948 Zbl 0004.21001 JFM 57.0405.06
[Ko] H.T. Koelink, "Askey-Wilson polynomials and the quantum SU(2) group: survey and applications" Acta Appl. Math., 44 (1996) pp. 295–352 MR1407326Zbl 0865.33013
[Le] N.N. Lebedev, "Special functions and their applications", Prentice-Hall (1965) (Translated from Russian) MR0174795 MR0350075 Zbl 0131.07002
[Mi] W. Miller jr., "Lie theory and special functions", Acad. Press (1968) MR0264140 Zbl 0174.10502
[NiUf] A.F. Nikiforov, V.B. Ufarov, "Special functions of mathematical physics", Birkhäuser (1988) (Translated from Russian) MR0922041 Zbl 0624.33001
[Olv] F.W.J. Olver et al., "NIST handbook of mathematical functions", Cambridge Univ. Press (2010) MR2723248 Zbl 1198.00002; online version: NIST Digital Library of Mathematical Functions (DLMF)
[PrBrMa] A.P. Prudnikov, Yu.A. Brychkov, O.I. Marichev, "Integrals and series", 1–5, Gordon & Breach (1986–1992) (Translated from Russian) MR0874986 MR0950173 MR1054647 MR1162979 MR1162980 Zbl 0733.00004 Zbl 0733.00005 Zbl 0967.00503 Zbl 0786.44003 Zbl 0781.44002
[SrKa] H.M. Srivastava, B.R.K. Kashyap, "Special functions in queuing theory", Acad. Press (1982) MR0657766 Zbl 0492.60089
[Sz] G. Szegö, "Orthogonal polynomials", Amer. Math. Soc., fourth ed. (1975) MR0372517 Zbl 0305.42011
[Vi] N.Ya. Vilenkin, "Special functions and the theory of group representations", Amer. Math. Soc. (1968) (Translated from Russian) MR0229863 Zbl 0172.18404
[ViKl] N.Ja. Vilenkin, A.U. Klimyk, "Representation of Lie groups and special functions", 1–3, Kluwer (1991–1993) (Translated from Russian) MR1143783 MR1220225 MR1206906 Zbl 0742.22001 Zbl 0809.22001 Zbl 0778.22001
[Wa] G.N. Watson, "A treatise on the theory of Bessel functions", Cambridge Univ. Press, second ed. (1944), reprinted (1995) MR1349110 Zbl 0849.33001
[Wa2] A. Wawrzyńczyk, "Group representations and special functions", Reidel (1984) MR0750113 Zbl 0545.43001
[WhWa] E.T. Whittaker, G.N. Watson, "A course of modern analysis", Cambridge Univ. Press, fourth ed. (1962), reprinted (1996) MR1424469 Zbl 0951.30002
How to Cite This Entry:
Special functions. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Special_functions&oldid=25532
This article was adapted from an original article by Yu.A. BrychkovA.P. Prudnikov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article