Namespaces
Variants
Actions

Smoothness, modulus of

From Encyclopedia of Mathematics
Revision as of 08:14, 6 June 2020 by Ulf Rehmann (talk | contribs) (tex encoded by computer)
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.


The modulus of continuity of the derivative of order $ m \geq 1 $ of a function $ f $ defined on a Banach space $ X $, i.e. the expression

$$ \omega _ {m} ( f, \delta , X) = $$

$$ = \ \sup _ {\begin{array}{c} h,x \in X \\ \| h \| _ {X} \leq \delta \end{array} } \left \| \sum _ {i = 0 } ^ { m } (- 1) ^ {m - i } \left ( \begin{array}{c} m \\ i \end{array} \right ) f \left ( x + ( m - 2i) { \frac{h}{2} } \right ) \right \| _ {X} , $$

where $ ( x \pm mh/2) \in X $. If $ m = 1 $, the modulus of smoothness is the ordinary modulus of continuity (cf. Continuity, modulus of) of $ f $. Basic properties of the modulus of smoothness (in the case $ X = \mathbf C $ and the space of continuous functions) are:

$$ \omega _ {m} ( f, 0, \mathbf C ) = 0; $$

$ \omega _ {m} ( f, \delta , \mathbf C ) $ does not decrease together with $ \delta $;

if $ k $ $ \geq 1 $ is an integer, then

$$ \omega _ {m} ( f, k \delta , \mathbf C ) \leq \ k ^ {m} \omega _ {m} ( f, \delta , \mathbf C ); $$

for any $ \lambda > 0 $,

$$ \omega _ {m} ( f, \lambda \delta , \mathbf C ) \leq \ ( \lambda + 1) ^ {m} \omega _ {m} ( f, \delta , \mathbf C ); $$

if $ \nu > m $, then

$$ \omega _ \nu ( f, \delta , \mathbf C ) \leq \ 2 ^ {\nu - m } \omega _ {m} ( f, \delta , \mathbf C ); $$

if $ \nu > m $, then

$$ \omega _ {m} ( f, \delta , \mathbf C ) \leq A _ {\nu , m } \delta ^ \nu \int\limits _ \delta ^ { a } \frac{\omega _ {m} ( f, u , \mathbf C ) }{u ^ {\nu + 1 } } \ du + O ( \delta ^ \nu ), $$

where $ A _ {\nu , m } $ and $ a $ are constants independent of $ f $.

Certain problems in the theory of approximation of functions can ultimately be solved only in terms of a modulus of smoothness of order $ m \geq 2 $. In the theory of approximations of functions an important class is the class of periodic continuous functions with period $ 2 \pi $ and with second-order modulus of smoothness satisfying the condition

$$ \omega _ {2} ( f, \delta , C _ {2 \pi } ) \leq \delta . $$

The modulus of continuity of such functions satisfies the condition

$$ \omega _ {1} ( f, \delta , C _ {2 \pi } ) \leq \ \left [ \frac{1}{ \mathop{\rm ln} ( \sqrt {2 } + 1) } \right ] \delta \mathop{\rm ln} { \frac \pi \delta } + O ( \delta ), $$

$ 0 < \delta \leq \pi $, and the constant $ 1/ \mathop{\rm ln} ( \sqrt {2 } + 1) $ cannot be improved [4].

References

[1] S.N. Bernshtein, "Sur l'ordre de la meilleure approximation des fonctions continués par de polynomes de degré donné" Mem. Publ. Classe Sci. Acad. Belgique (2) , 4 (1912) pp. 1–103
[2] A. Marchaud, "Sur les dérivées et sur les différences des fonctions de variables réelles" J. Math. Pures Appl. , 6 (1927) pp. 337–425
[3] A. Zygmund, "Smooth functions" Duke Math. J. , 12 (1945) pp. 47–76
[4] A.V. Efimov, "Estimate of the modules of continuity of a function in the class " Izv. Akad. Nauk SSSR Ser Mat. , 21 (1957) pp. 283–288 (In Russian)

Comments

The modulus of smoothness $ \omega _ {m} ( f, \delta ) $ is also written in terms of symmetric differences, as $ \omega _ {m} ( f , \delta ) = \sup _ {0 < h \leq \delta } \| \Delta _ {h} ^ {m} f \| $, where

$$ \Delta _ {h} ^ {1} f ( x) = \ f \left ( x + \frac{h}{2} \right ) - f \left ( x - \frac{h}{2} \right ) $$

and

$$ \Delta _ {h} ^ {m} f ( x) = \ \Delta _ {n} ( \Delta _ {n} ^ {m-} 1 f( x)) = \ \sum _ { i= } 0 ^ { m } (- 1) ^ {m-} i \left ( \begin{array}{c} m \\ i \end{array} \right ) f \left ( x + ( m- 2i) \frac{h}{2} \right ) . $$

This gives a recurrent procedure for computing (approximations of) it.

To overcome certain shortcomings of this (classical) modulus of smoothness (especially its ability to characterize the order of the best polynomial approximation $ E _ {n} ( f ) $ to a function $ f \in L _ {p} [- 1 , 1] $), new moduli of smoothness have been introduced. They use so-called step-weight functions $ \varphi ( x) $, and are defined by

$$ \omega _ \varphi ^ {n} ( f , \delta ) _ {p} = \ \sup _ {0 < h \leq \delta } \ \| \Delta _ {h\varphi } ^ {m} f \| _ {L _ {p} } . $$

The function $ \varphi ( x) $ is chosen for the problem at hand. Note that here the increment $ h \varphi ( x) $ varies with $ x $. A basic result is that $ E _ {n} ( f ) _ {p} = O( n ^ {- \alpha } ) $ if and only if $ \omega _ \varphi ^ {m} ( f , \delta ) _ {p} = O( t ^ \alpha ) $. (Here $ 0< \alpha < m $, $ 1 \leq p \leq \infty $, $ \varphi ( x) = ( 1- x ^ {2} ) ^ {1/2} $, $ f \in L _ {p} [- 1, 1] $, and approximation is in $ L _ {p} [- 1, 1] $.) For more on such moduli, their use in $ L _ {p} $ approximation problems and in the interpolation of spaces, see [a1].

References

[a1] Z. Ditzian, V. Totik, "Moduli of smoothness" , Springer (1987)
[a2] G.G. Lorentz, "Approximation of functions" , Holt, Rinehart & Winston (1966)
How to Cite This Entry:
Smoothness, modulus of. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Smoothness,_modulus_of&oldid=48741
This article was adapted from an original article by A.V. Efimov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article