Namespaces
Variants
Actions

Singular measures

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

2020 Mathematics Subject Classification: Primary: 28A15 [MSN][ZBL]

If $\mu$ and $\nu$ are two $\sigma$-finite measures on the same $\sigma$-algebra $\mathcal{B}$ of subsets of $X$, then $\mu$ and $\nu$ are said to be singular (or also mutually singular, or orthogonal) if there are two sets $A,B\in\mathcal{B}$ such that $A\cap B=\emptyset$, $A\cup B = X$ and $\mu (B)=\nu (A) = 0$. The concept can be extended to signed measures or vector-valued measures: in this case it is required that $\mu (B\cap E) = \nu (A\cap E) = 0$ for every $E\in\mathcal{B}$ (cp. with Section 30 of [Ha]). The singularity of the two measures $\mu$ and $\nu$ is usually denoted by $\mu\perp\nu$.

For general, i.e. non $\sigma$-finite (nonnegative) measures, the concept can be generalized in the following way: $\mu$ and $\nu$ are singular if the only (nonnegative) measure $\alpha$ on $\mathcal{B}$ with the property \[ \alpha (A)\leq \min \{\mu (A), \nu (A)\} \qquad \forall A\in\mathcal{B} \] is the trivial measure which assigns the value $0$ to every element of $\mathcal{B}$. By the Radon-Nikodym decomposition this concept coincides with the previous one when we assume the $\sigma$-finiteness of $\mu$ and $\nu$.

Comments

When $X$ is the standard euclidean space and $\mathcal{B}$ the Borel $\sigma$-algebra, the name singular measures is often used for those $\sigma$-finite measures $\mu$ which are orthogonal to the Lebesgue measure.

References

[AFP] L. Ambrosio, N. Fusco, D. Pallara, "Functions of bounded variations and free discontinuity problems". Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York, 2000. MR1857292Zbl 0957.49001
[Bo] N. Bourbaki, "Elements of mathematics. Integration", Addison-Wesley (1975) pp. Chapt.6;7;8 (Translated from French) MR0583191 Zbl 1116.28002 Zbl 1106.46005 Zbl 1106.46006 Zbl 1182.28002 Zbl 1182.28001 Zbl 1095.28002 Zbl 1095.28001 Zbl 0156.06001
[DS] N. Dunford, J.T. Schwartz, "Linear operators. General theory", 1, Interscience (1958) MR0117523 Zbl 0635.47001
[Bi] P. Billingsley, "Convergence of probability measures", Wiley (1968) MR0233396 Zbl 0172.21201
[Ha] P.R. Halmos, "Measure theory", v. Nostrand (1950) MR0033869 Zbl 0040.16802
[HS] E. Hewitt, K.R. Stromberg, "Real and abstract analysis", Springer (1965) MR0188387 Zbl 0137.03202
How to Cite This Entry:
Singular measures. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Singular_measures&oldid=27648
This article was adapted from an original article by M.I. Voitsekhovskii (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article