Namespaces
Variants
Actions

Signed measure

From Encyclopedia of Mathematics
Revision as of 23:39, 30 July 2012 by Jjg (talk | contribs) (moved newcommand up from start of para (it adds unwanted whitespace), minor spelling corrections)
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

generalized measure, real valued measure

2020 Mathematics Subject Classification: Primary: 28A33 [MSN][ZBL] $\newcommand{\abs}[1]{\left|#1\right|}$

A signed measure is real-valued $\sigma$-additive function defined on a certain σ-algebra $\mathcal{B}$ of subsets of a set $X$. More generally one can consider vector-valued measures, i.e. $\sigma$-additive functions $\mu$ on $\mathcal{B}$ taking values on a Banach space $B$ (see Vector measure). The total variation measure of $\mu$ is defined on $B\in\mathcal{B}$ as: \[ \abs{\mu}(B) :=\sup\left\{ \sum \abs{\mu(B_i)}_B: \text{$\{B_i\}\subset\mathcal{B}$ is a countable partition of $B$}\right\} \] where $\abs{\cdot}_B$ denotes the norm of $B$. In the real-valued case the above definition simplifies as \[ \abs{\mu}(B) = \sup_{A\in \mathcal{B}, A\subset B} \left(\abs{\mu (A)} + \abs{\mu (X\setminus B)}\right). \] $\abs{\mu}$ is a measure and $\mu$ is said to have finite total variation if $\abs{\mu} (X) <\infty$. If $V$ is finite-dimensional the [[Radon-Nikodym theorem]] implies the existence of a measurable $f\in L^1 (\abs{\mu}, V)$ such that \[ \mu (B) = \int_B f d\abs{\mu}\qquad \mbox{for all $B\in\mathcal{B}$.} \] In the case of real-valued measures this implies that each such $\mu$ can be written as the difference of two nonnegative measures $\mu^+$ and $\mu^-$ which are mutually singular (i.e. such that there are sets $B^+, B^-\in\mathcal{B}$ with $\mu^+ (X\setminus B^+)= \mu^- (X\setminus B^-) =\mu^+ (B^-)=\mu^- (B^+)=0$). This last statement is sometimes referred to as Hahn decomposition theorem. The Hahn decomposition theorem can also be proved defining directly the measures $\mu^+$ and $\mu^-$ in the following way: \begin{align*} \mu^+ (B) = \sup \{ \mu (A): A\in \mathcal{B}, A\subset B\}\\ \mu^- (B) = \sup \{ -\mu (A): A\in \mathcal{B}, A\subset B\} \end{align*} $\mu^+$ and $\mu^-$ are sometimes called, respectively, positive and negative variations of $\mu$. Observe that $|\mu| = \mu^++\mu^-$. By the [[Riesz representation theorem]] the space of signed measures with finite total variation on the $\sigma$-algebra of Borel subsets of a locally compact Hausdorff space is the dual of the space of continuous functions (cp. also with Convergence of measures).

References

[AmFuPa] L. Ambrosio, N. Fusco, D. Pallara, "Functions of bounded variations and free discontinuity problems". Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York, 2000. MR1857292Zbl 0957.49001
[Bo] N. Bourbaki, "Elements of mathematics. Integration" , Addison-Wesley (1975) pp. Chapt.6;7;8 (Translated from French) MR0583191 Zbl 1116.28002 Zbl 1106.46005 Zbl 1106.46006 Zbl 1182.28002 Zbl 1182.28001 Zbl 1095.28002 Zbl 1095.28001 Zbl 0156.06001
[DS] N. Dunford, J.T. Schwartz, "Linear operators. General theory" , 1 , Interscience (1958) MR0117523
[Bi] P. Billingsley, "Convergence of probability measures" , Wiley (1968) MR0233396 Zbl 0172.21201
[Ma] P. Mattila, "Geometry of sets and measures in euclidean spaces. Cambridge Studies in Advanced Mathematics, 44. Cambridge University Press, Cambridge, 1995. MR1333890 Zbl 0911.28005
How to Cite This Entry:
Signed measure. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Signed_measure&oldid=27276
This article was adapted from an original article by M.I. Voitsekhovskii (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article