Namespaces
Variants
Actions

Sigma-Congruence

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

2020 Mathematics Subject Classification: Primary: 68P05 [MSN][ZBL]

A $\Sigma$-congruence is a congruence relation defined on a $\Sigma$-algebra. They provide a method to represent term-generated $\Sigma$-algebras using quotient algebras of the ground term algebra $T(\Sigma)$. Such methods are important for getting an overview of the (isomorphism classes of) possibly existing term-generated $\Sigma$-algebras, and thus for getting an overview of the possible semantical behaviours associated with the signature $\Sigma=(S,F)$.

Definition of $\Sigma$-congruences

Let $A$ be a $\Sigma$-algebra defined over a signature $\Sigma=(S,F)$. A $\Sigma$-congruence is an $S$-sorted equivalence relation $(\sim_s)_{s\in S}$ defined on $A$ with $\sim_s\subseteq s^A\times s^A$, which is compatible with the operations $f^A$, $f\in F$ of $A$. Compatibility means in this case that for each $f\in F$ with $\mathrm{type}(f)= s_1\times\cdots\times s_n \longrightarrow s$ and for each $x_i,y_i\in A_{s_i}$ with $x_i \sim_{s_i} y_i$ it holds $f^A(x_1,\ldots,x_n) \sim_s f^A(y_1,\ldots,y_n)$. If no reference to a specific $\Sigma$-algebra $A$ is made, the ground term algebra $T(\Sigma)$ is considered (under the assumption of a sensible signature $\Sigma$). The relation $\sim_s$ designates the restriction of $\sim$ to the sort $s\in S$.

For a $\Sigma$-algebra $A$, the set $C(A)$ of all $\Sigma$-congruences for $A$ forms a complete lattice w.r.t. set-theoretic inclusion [EM85][W90]. Its least element is the identity congruence $\sim^{T(A)} := \{(a,a)\mid a\in A\}$ over $A$. Its greatest element is the universal congruence $\sim^{U(A)} := \{(a,a')\mid a,a'\in s^A, s\in S\}$ over $A$. The least element $\sim^{T(A)}$ corresponds to the initial algebra $T(\Sigma)$ (i.e. the ground term algebra) of $\mathrm{Alg}(\Sigma)$ and $\mathrm{Gen}(\Sigma)$. The greatest element $\sim^{U(A)}$ corresponds to the terminal algebra $U(\Sigma)$ of $\mathrm{Alg}(\Sigma)$ and $\mathrm{Gen}(\Sigma)$ [W90].

For a $\Sigma$-algebra $A$ and a family $K=\{\sim_i\}_{i\in I}\subseteq C(A)$ of $\Sigma$-congruences defined on $A$, the infimum of $K$ coincides with the set-theoretic intersection, i.e. $(\bigcap\limits_{i\in I} (\sim_i)_s)_{s\in S} =\inf_{i\in I} \sim_i$ [EM85]. As an immediate consequence, the set-theoretic intersection of a family $\{\sim_i\}_{i\in I}$ of $\Sigma$-congruences is again a $\Sigma$-congruence defined on $A$. Furthermore, for an $S$-sorted binary relation $\approx\subseteq A\times A$ defined on $A$ there exists a least (with respect to $\subseteq$) $\Sigma$-congruence $\sim \in C(A)$ defined on $A$ whith $\approx\subseteq\sim$ [ST99].

Construction of $\Sigma$-Congruences

$\Sigma$-Congruences are directly related to $\Sigma$-algebra-morphism. It is possible to construct a $\Sigma$-congruence $\sim^m$ on a $\Sigma$-algebra $A$ using a $\Sigma$-algebra-morphism $m\colon A\longrightarrow B$ between $A$ and another $\Sigma$-algebra $B$. The $\Sigma$-congruence $\sim^m = (\sim^m_s)_{s\in S}$ is defined via $x\sim^m_s y :\Longleftrightarrow m_s(x)=m_s(y)$ for $x,y\in A$. It is called the $\Sigma$-congruence induced by $m$ [W90].

In the following, we consider a sensible signature $\Sigma$ for assuring the existence of the corresponding ground term algebra $T(\Sigma)$. For a $\Sigma$-algebra $A$, one can define an associated $\Sigma$-congruence $\sim^A\in C(T(\Sigma))$ by $t_1\sim^A t_2 \colon\Longleftrightarrow t_1^A = t_2^A$ for $t_1,t_2\in T_s(\Sigma)$, $s\in S$. In particular, any $\Sigma$-congruence $\sim\in C(X)$ is associated with $T(\Sigma)/\sim$ [W90].

Application I: Quotient Algebras

The identification of terms $t,t'\in T(\Sigma)$ related to each other by a $\Sigma$-congruence leads to so-called quotient $\Sigma$-algebras of the ground term algebra $T(\Sigma)$. Each term-generated $\Sigma$-algebra can be represented in this way. Formally, a quotient algebra is defined ion the following way.

Let $\sim \in C(A)$ be a $\Sigma$-congruence defined on a $\Sigma$-algebra $A$. Then the quotient $\Sigma$-algebra $A/\sim$ is defined as follows [M89].

  • $s^{A/\sim} :=\{[a]_\sim\mid a\in s^A\}$
  • $f^{A/\sim} := [f^A]_\sim$ for $f\in F$ with $\mathrm{type}(f)=\,\,\rightarrow s\}$
  • $f^{A/\sim}([a_1],\ldots,[a_n]) := [f^A(a_1,\ldots,a_n)]$, $f\in F$, with $\mathrm{type}(f)= s_1\times\cdots\times s_n \longrightarrow s$ and for $a_i\in s_i^A$.

$A/\sim \in \mathrm{Alg}(\Sigma)$ is a $\Sigma$-algebra. Its definition is well-defined because of the congruence property of $\sim$ [EM85]. Corresponding to $A/\sim$, one can define mappings $m_s\colon s^A \longrightarrow s^A/\sim_s; a \mapsto [a]_{\sim_s}$ for $s \in S$. Then $m=(m_s)_{s\in S} \colon A \longrightarrow A/\sim$ is a surjective $\Sigma$-algebra-morphism [M89]. It has the following universal property: Let $B$ be a $\Sigma$-algebra and $f\colon A\longrightarrow B$ be a $\Sigma$-algebra-morphism with $\sim \subseteq \sim_f$. Then there is a unique $\Sigma$-algebra-morphism $\bar f \colon A/\sim\longrightarrow B$ such that $f_s(a) = \bar f_s([a]_{\sim_s})$ for all $s \in S$ and $a \in s^A$. If $\sim = \sim_f$ then $\bar f$ is injective [EM85]. If $f$ is surjective, then $B\cong A/\sim^m$ [M89].

The above property characterizes quotient algebras up to isomorphism. It follows in particular that for any $\Sigma$-algebra-morphism $m\colon A \longrightarrow B$, $A/\sim_m$ is isomorphic to the image $m(A)$ of $A$ under $m$ [ST99].

Application II: Term-generated $\Sigma$-Algebras

An application of $\Sigma$-congruences is the representation of a term-generated $\Sigma$-algebra using the ground term algebra $T(\Sigma)$ in the case of a sensible signature $\Sigma$. Together with $\Sigma$-algebra-morphism, one has two different options to describe a term-generated $\Sigma$-algebra $A$ in this way. More precisely, we can state that a $\Sigma$-algebra $A$ is term-generated iff it is isomorphic to a quotient algebra $T(\Sigma)/\sim$ of the ground term algebra $T(\Sigma)$ with $\sim=\sim^A$ [W90]. This is the case, in turn, iff it is the image of $T(\Sigma)$ under a $\Sigma$-algebra-morphism.

It follows that there is a one-to-one correspondence between isomorphism classes of term-generated $\Sigma$-algebras and congruences on $T(\Sigma)$ [ST99]. Especially, for term-generated $\Sigma$-algebras $A,B$ it holds $A\cong B$ iff $\sim^A= \sim^B$ [W90]. For a term-generated $\Sigma$-algebra $A$ and for a $\Sigma$-algebra $B$, it exists a $\Sigma$-morphism $m\colon A\longrightarrow B$ iff $\sim^A\subseteq \sim^B$ [W90].

References

[EM85] H. Ehrig, B. Mahr: "Fundamentals of Algebraic Specifications", Volume 1, Springer 1985
[EM90] H. Ehrig, B. Mahr: "Fundamentals of Algebraic Specifications", Volume 2, Springer 1990
[M89] B. Möller: "Algorithmische Sprachen und Methodik des Programmierens I", lecture notes, Technical University Munich 1989
[ST99] D. Sannella, A. Tarlecki, "Algebraic Preliminaries", in Egidio Astesiano, Hans-Joerg Kreowski, Bernd Krieg-Brueckner, "Algebraic Foundations of System Specification", Springer 1999
[W90] M. Wirsing: "Algebraic Specification", in J. van Leeuwen: "Handbook of Theoretical Computer Science", Elsevier 1990
How to Cite This Entry:
Sigma-Congruence. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Sigma-Congruence&oldid=29449