Namespaces
Variants
Actions

Difference between revisions of "Semi-algebraic set"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (MR/ZBL numbers added)
Line 5: Line 5:
 
A semi-analytic set is, by definition, a set in a real-analytic manifold which can be locally described by finitely many analytic equalities and inequalities.
 
A semi-analytic set is, by definition, a set in a real-analytic manifold which can be locally described by finitely many analytic equalities and inequalities.
  
The Tarski–Seidenberg theorem asserts the existence of a decision procedure (cf. also [[Decidable set|Decidable set]]) for deciding the truth of any elementary sentence built up from finitely many polynomial inequalities <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083950/s0839509.png" />, the connectives "and" , "or" and "not" , and the quantifiers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083950/s08395010.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083950/s08395011.png" />. Two precise formulations are: 1) Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083950/s08395012.png" /> be a semi-algebraic set and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083950/s08395013.png" /> the projection onto the last <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083950/s08395014.png" /> coordinates. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083950/s08395015.png" /> is semi-algebraic. 2) Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083950/s08395016.png" /> be a finite sentence built up from inequalities <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083950/s08395017.png" /> and the connectives "and" , "or" and "not" (such a sentence is called a polynomial relation). Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083950/s08395018.png" /> be a series of quantifiers of the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083950/s08395019.png" /> or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083950/s08395020.png" />. There is an algorithm for finding a polynomial relation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083950/s08395021.png" /> such that
+
The Tarski–Seidenberg theorem asserts the existence of a decision procedure (cf. also [[Decidable set|Decidable set]]) for deciding the truth of any elementary sentence built up from finitely many polynomial inequalities <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083950/s0839509.png" />, the connectives "and" , "or" and "not" , and the quantifiers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083950/s08395010.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083950/s08395011.png" />. Two precise formulations are: 1) Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083950/s08395012.png" /> be a semi-algebraic set and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083950/s08395013.png" /> the projection onto the last <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083950/s08395014.png" /> coordinates. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083950/s08395015.png" /> is semi-algebraic. 2) Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083950/s08395016.png" /> be a finite sentence built up from inequalities <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083950/s08395017.png" /> and the connectives "and" , "or" and "not" (such a sentence is called a polynomial relation). Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083950/s08395018.png" /> be a series of quantifiers of the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083950/s08395019.png" /> or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083950/s08395020.png" />. There is an algorithm for finding a polynomial relation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083950/s08395021.png" /> such that
  
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083950/s08395022.png" /></td> </tr></table>
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083950/s08395022.png" /></td> </tr></table>
Line 20: Line 20:
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> H. Hironaka,   "Stratification and flatness" P. Holm (ed.) , ''Real and Complex Singularities (Oslo, 1976). Proc. Nordic Summer School'' , Sijthoff &amp; Noordhoff (1977) pp. 199–266</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> W. Pawtucki,   "Points de Nash des ensembles sous-analytiques" , Amer. Math. Soc. (1990)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> G.W. Brumfiel,   "Partially ordered rings and semi-algebraic geometry" , Cambridge Univ. Press (1979)</TD></TR></table>
+
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> H. Hironaka, "Stratification and flatness" P. Holm (ed.) , ''Real and Complex Singularities (Oslo, 1976). Proc. Nordic Summer School'' , Sijthoff &amp; Noordhoff (1977) pp. 199–266 {{MR|0499286}} {{ZBL|0424.32004}} </TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> W. Pawtucki, "Points de Nash des ensembles sous-analytiques" , Amer. Math. Soc. (1990)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> G.W. Brumfiel, "Partially ordered rings and semi-algebraic geometry" , Cambridge Univ. Press (1979) {{MR|0553280}} {{ZBL|0415.13015}} </TD></TR></table>

Revision as of 21:56, 30 March 2012

semi-analytic set.

A semi-algebraic set in (or , where is a real closed field) is a set that can be given by finitely many polynomial equalities and inequalities. More precisely, for , let . Then is semi-algebraic if it belongs to the smallest Boolean ring of subsets of containing all the .

A semi-analytic set is, by definition, a set in a real-analytic manifold which can be locally described by finitely many analytic equalities and inequalities.

The Tarski–Seidenberg theorem asserts the existence of a decision procedure (cf. also Decidable set) for deciding the truth of any elementary sentence built up from finitely many polynomial inequalities , the connectives "and" , "or" and "not" , and the quantifiers , . Two precise formulations are: 1) Let be a semi-algebraic set and the projection onto the last coordinates. Then is semi-algebraic. 2) Let be a finite sentence built up from inequalities and the connectives "and" , "or" and "not" (such a sentence is called a polynomial relation). Let be a series of quantifiers of the form or . There is an algorithm for finding a polynomial relation such that

It follows from the Tarski–Seidenberg theorem that the image under a polynomial mapping of a semi-algebraic set is semi-algebraic. Indeed, this is equivalent.

The image of a semi-analytic set under an analytic mapping is not necessarily semi-analytic. A subanalytic set on a real-analytic manifold is, by definition, a set that is locally the image of a semi-analytic set under an analytic mapping. The points of a subanalytic set at which it is not semi-analytic form a subanalytic set, cf. [a2].

The closure of a semi-algebraic (respectively, semi-analytic or subanalytic) set is again semi-algebraic (respectively, semi-analytic or subanalytic).

The image of a semi-algebraic (respectively, subanalytic) set under an algebraic (respectively, analytic) mapping is a semi-algebraic (respectively, subanalytic) set.

Finally, a semi-algebraic (respectively, semi-analytic or subanalytic) subset of a smooth algebraic (respectively, analytic or analytic) variety admits a smooth stratification, whose strata are semi-algebraic (respectively, semi-analytic or subanalytic) (and smooth).

References

[a1] H. Hironaka, "Stratification and flatness" P. Holm (ed.) , Real and Complex Singularities (Oslo, 1976). Proc. Nordic Summer School , Sijthoff & Noordhoff (1977) pp. 199–266 MR0499286 Zbl 0424.32004
[a2] W. Pawtucki, "Points de Nash des ensembles sous-analytiques" , Amer. Math. Soc. (1990)
[a3] G.W. Brumfiel, "Partially ordered rings and semi-algebraic geometry" , Cambridge Univ. Press (1979) MR0553280 Zbl 0415.13015
How to Cite This Entry:
Semi-algebraic set. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Semi-algebraic_set&oldid=11607