Namespaces
Variants
Actions

Difference between revisions of "Selberg conjecture"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (MR/ZBL numbers added)
(One intermediate revision by the same user not shown)
Line 23: Line 23:
 
Selberg's approach was to relate this problem to a purely arithmetical question about certain sums of exponentials, called Kloosterman sums (cf. also [[Exponential sum estimates|Exponential sum estimates]]; [[Trigonometric sum|Trigonometric sum]]). This allowed him to invoke results from arithmetic geometry. The key ingredient giving the estimate is a (sharp) bound on Kloosterman sums due to A. Weil [[#References|[a13]]]. This bound, in turn, is a consequence of the Riemann hypothesis for the [[Zeta-function|zeta-function]] of a curve over a finite field, which he had proven earlier (cf. also [[Riemann hypotheses|Riemann hypotheses]]). On the other hand, to go further than the theorem by this approach one needs to detect cancellations in sums of such Kloosterman sums, and arithmetic geometry offers nothing in this direction. This is the reason that the approach through Kloosterman sums has a natural barrier at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130210/s13021019.png" />. It is interesting that H. Iwaniec [[#References|[a5]]] has given a proof of Selberg's theorem which, while still being along the lines of Kloosterman sums, avoids appealing to Weil's bounds.
 
Selberg's approach was to relate this problem to a purely arithmetical question about certain sums of exponentials, called Kloosterman sums (cf. also [[Exponential sum estimates|Exponential sum estimates]]; [[Trigonometric sum|Trigonometric sum]]). This allowed him to invoke results from arithmetic geometry. The key ingredient giving the estimate is a (sharp) bound on Kloosterman sums due to A. Weil [[#References|[a13]]]. This bound, in turn, is a consequence of the Riemann hypothesis for the [[Zeta-function|zeta-function]] of a curve over a finite field, which he had proven earlier (cf. also [[Riemann hypotheses|Riemann hypotheses]]). On the other hand, to go further than the theorem by this approach one needs to detect cancellations in sums of such Kloosterman sums, and arithmetic geometry offers nothing in this direction. This is the reason that the approach through Kloosterman sums has a natural barrier at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130210/s13021019.png" />. It is interesting that H. Iwaniec [[#References|[a5]]] has given a proof of Selberg's theorem which, while still being along the lines of Kloosterman sums, avoids appealing to Weil's bounds.
  
Presently (2000), Selberg's conjecture is part of the "Ramanujan–Petersson conjecture at infinity" . In other words, if interpreting the Ramanujan–Petersson conjecture as a statement about the irreducible representations of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130210/s13021020.png" />-adic groups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130210/s13021021.png" /> inside a cuspidal representation of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130210/s13021022.png" /> (see below), Selberg's conjecture will follow as a statement for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130210/s13021023.png" />.
+
Presently (2000), Selberg's conjecture is part of the "Ramanujan–Petersson conjecture at infinity" . In other words, if interpreting the Ramanujan–Petersson conjecture as a statement about the irreducible representations of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130210/s13021020.png" />-adic groups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130210/s13021021.png" /> inside a cuspidal representation of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130210/s13021022.png" /> (see below), Selberg's conjecture will follow as a statement for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130210/s13021023.png" />.
  
Indeed, first let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130210/s13021024.png" /> denote the completion of the rational field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130210/s13021025.png" /> with respect to the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130210/s13021026.png" />-adic absolute value <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130210/s13021027.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130210/s13021028.png" />, and view <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130210/s13021029.png" /> as the completion with respect to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130210/s13021030.png" />. By the adèles, denoted <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130210/s13021031.png" />, one means the "restricted" direct product <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130210/s13021032.png" /> (restricted so that almost every <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130210/s13021033.png" /> has <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130210/s13021034.png" />, i.e., <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130210/s13021035.png" />; cf. also [[Adèle|Adèle]]). Secondly, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130210/s13021036.png" /> denote the space of measurable functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130210/s13021037.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130210/s13021038.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130210/s13021039.png" /> ( "restricted" means <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130210/s13021040.png" />, with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130210/s13021041.png" /> for almost every <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130210/s13021042.png" />), <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130210/s13021043.png" /> imbedded diagonally in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130210/s13021044.png" />,
+
Indeed, first let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130210/s13021024.png" /> denote the completion of the rational field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130210/s13021025.png" /> with respect to the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130210/s13021026.png" />-adic absolute value <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130210/s13021027.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130210/s13021028.png" />, and view <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130210/s13021029.png" /> as the completion with respect to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130210/s13021030.png" />. By the adèles, denoted <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130210/s13021031.png" />, one means the "restricted" direct product <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130210/s13021032.png" /> (restricted so that almost every <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130210/s13021033.png" /> has <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130210/s13021034.png" />, i.e., <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130210/s13021035.png" />; cf. also [[Adèle|Adèle]]). Secondly, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130210/s13021036.png" /> denote the space of measurable functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130210/s13021037.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130210/s13021038.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130210/s13021039.png" /> ( "restricted" means <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130210/s13021040.png" />, with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130210/s13021041.png" /> for almost every <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130210/s13021042.png" />), <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130210/s13021043.png" /> imbedded diagonally in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130210/s13021044.png" />,
  
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130210/s13021045.png" /></td> </tr></table>
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130210/s13021045.png" /></td> </tr></table>
Line 59: Line 59:
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130210/s13021082.png" /></td> </tr></table>
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130210/s13021082.png" /></td> </tr></table>
  
defined by action of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130210/s13021083.png" /> on symmetric tensors of rank <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130210/s13021084.png" />. It was conjectured by R.P. Langlands [[#References|[a8]]] that there should be a corresponding mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130210/s13021085.png" /> that (roughly) maps cuspidal automorphic representations of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130210/s13021086.png" /> to those "of GLm+ 1" ; moreover, whenever <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130210/s13021087.png" /> corresponds to class-one representations indexed by
+
defined by action of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130210/s13021083.png" /> on symmetric tensors of rank <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130210/s13021084.png" />. It was conjectured by R.P. Langlands [[#References|[a8]]] that there should be a corresponding mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130210/s13021085.png" /> that (roughly) maps cuspidal automorphic representations of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130210/s13021086.png" /> to those "of GLm+ 1" ; moreover, whenever <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130210/s13021087.png" /> corresponds to class-one representations indexed by
  
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130210/s13021088.png" /></td> </tr></table>
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130210/s13021088.png" /></td> </tr></table>
Line 73: Line 73:
 
Either Selberg's conjecture will continue to be proved along the lines of Langlands' conjecture, or by entirely new ideas.
 
Either Selberg's conjecture will continue to be proved along the lines of Langlands' conjecture, or by entirely new ideas.
  
There is a far-reaching generalization of Selberg's conjecture to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130210/s130210100.png" />: If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130210/s130210101.png" /> is an irreducible cuspidal automorphic representation of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130210/s130210102.png" />, then every class-one local representation of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130210/s130210103.png" /> is "tempered" .
+
There is a far-reaching generalization of Selberg's conjecture to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130210/s130210100.png" />: If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130210/s130210101.png" /> is an irreducible cuspidal automorphic representation of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130210/s130210102.png" />, then every class-one local representation of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130210/s130210103.png" /> is "tempered" .
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> P. Deligne,   "La conjecture de Weil I" ''Publ. Math. IHES'' , '''43''' (1974) pp. 273–307</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> I. Gel'fand,   M. Graev,   I. Piatetski-Shapiro,   "Representation theory and automorphic functions" , W.B. Saunders (1969)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> S. Gelbart,   H. Jacquet,   "A relation between automorphic representations of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130210/s130210104.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130210/s130210105.png" />" ''Ann. Sci. École Norm. Sup.'' , '''11''' (1978) pp. 471–552</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> D. Hejhal,   "The Selberg trace formula II" , ''Lecture Notes in Mathematics'' , '''1001''' , Springer (1983)</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> H. Iwaniec,   "Selberg's lower bound for the first eigenvalue of congruence groups" , ''Number Theory, Trace Formula, Discrete Groups'' , Acad. Press (1989) pp. 371–375</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top"> H. Kim,   F. Shahidi,   "Functorial products for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130210/s130210106.png" /> and functorial symmetric cube for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130210/s130210107.png" />" ''C.R. Acad. Sci. Paris'' , '''331''' : 8 (2000) pp. 599–604</TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top"> W. Luo,   Z. Rudnick,   P. Sarnak,   "On Selberg's eigenvalue conjecture" ''Geom. Funct. Anal.'' , '''5''' (1995) pp. 387–401</TD></TR><TR><TD valign="top">[a8]</TD> <TD valign="top"> R.P. Langlands,   "Problems in the theory of automorphic forms" , ''Lectures in Modern Analysis and Applications'' , ''Lecture Notes in Mathematics'' , '''170''' , Springer (1970) pp. 18–86</TD></TR><TR><TD valign="top">[a9]</TD> <TD valign="top"> H. Maass,   "Nichtanalytishe Automorphe Funktionen" ''Math. Ann.'' , '''121''' (1949) pp. 141–183</TD></TR><TR><TD valign="top">[a10]</TD> <TD valign="top"> P. Sarnak,   "Selberg's eigenvalue conjecture" ''Notices Amer. Math. Soc.'' , '''42''' : 4 (1995) pp. 1272–1277</TD></TR><TR><TD valign="top">[a11]</TD> <TD valign="top"> I. Satake,   "Spherical functions and Ramanujan's conjecture" , ''Algebraic Groups and Discontinuous Subgroups'' , ''Proc. Symp. Pure Math.'' , '''IX''' , Amer. Math. Soc. (1966) pp. 258–264</TD></TR><TR><TD valign="top">[a12]</TD> <TD valign="top"> A. Selberg,   "On the estimation of Fourier coefficients of modular forms" , ''Proc. Symp. Pure Math.'' , '''VIII''' , Amer. Math. Soc. (1965) pp. 1–15</TD></TR><TR><TD valign="top">[a13]</TD> <TD valign="top"> A. Weil,   "On some exponential sums" ''Proc. Nat. Acad. Sci.'' , '''34''' (1948) pp. 204–207</TD></TR></table>
+
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> P. Deligne, "La conjecture de Weil I" ''Publ. Math. IHES'' , '''43''' (1974) pp. 273–307 {{MR|0340258}} {{ZBL|0314.14007}} {{ZBL|0287.14001}} </TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> I. Gel'fand, M. Graev, I. Piatetski-Shapiro, "Representation theory and automorphic functions" , W.B. Saunders (1969) {{MR|233772}} {{ZBL|0718.11022}} {{ZBL|0138.07201}} {{ZBL|0136.07301}} {{ZBL|0121.30601}} </TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> S. Gelbart, H. Jacquet, "A relation between automorphic representations of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130210/s130210104.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130210/s130210105.png" />" ''Ann. Sci. École Norm. Sup.'' , '''11''' (1978) pp. 471–552 {{MR|0533066}} {{ZBL|0406.10022}} </TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> D. Hejhal, "The Selberg trace formula II" , ''Lecture Notes in Mathematics'' , '''1001''' , Springer (1983) {{MR|}} {{ZBL|}} </TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> H. Iwaniec, "Selberg's lower bound for the first eigenvalue of congruence groups" , ''Number Theory, Trace Formula, Discrete Groups'' , Acad. Press (1989) pp. 371–375 {{MR|993327}} {{ZBL|}} </TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top"> H. Kim, F. Shahidi, "Functorial products for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130210/s130210106.png" /> and functorial symmetric cube for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130210/s130210107.png" />" ''C.R. Acad. Sci. Paris'' , '''331''' : 8 (2000) pp. 599–604 {{MR|1799096}} {{ZBL|1002.11044}} </TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top"> W. Luo, Z. Rudnick, P. Sarnak, "On Selberg's eigenvalue conjecture" ''Geom. Funct. Anal.'' , '''5''' (1995) pp. 387–401 {{MR|1334872}} {{ZBL|}} </TD></TR><TR><TD valign="top">[a8]</TD> <TD valign="top"> R.P. Langlands, "Problems in the theory of automorphic forms" , ''Lectures in Modern Analysis and Applications'' , ''Lecture Notes in Mathematics'' , '''170''' , Springer (1970) pp. 18–86 {{MR|0302614}} {{ZBL|0225.14022}} </TD></TR><TR><TD valign="top">[a9]</TD> <TD valign="top"> H. Maass, "Nichtanalytishe Automorphe Funktionen" ''Math. Ann.'' , '''121''' (1949) pp. 141–183 {{MR|}} {{ZBL|}} </TD></TR><TR><TD valign="top">[a10]</TD> <TD valign="top"> P. Sarnak, "Selberg's eigenvalue conjecture" ''Notices Amer. Math. Soc.'' , '''42''' : 4 (1995) pp. 1272–1277 {{MR|}} {{ZBL|}} </TD></TR><TR><TD valign="top">[a11]</TD> <TD valign="top"> I. Satake, "Spherical functions and Ramanujan's conjecture" , ''Algebraic Groups and Discontinuous Subgroups'' , ''Proc. Symp. Pure Math.'' , '''IX''' , Amer. Math. Soc. (1966) pp. 258–264 {{MR|211955}} {{ZBL|}} </TD></TR><TR><TD valign="top">[a12]</TD> <TD valign="top"> A. Selberg, "On the estimation of Fourier coefficients of modular forms" , ''Proc. Symp. Pure Math.'' , '''VIII''' , Amer. Math. Soc. (1965) pp. 1–15 {{MR|0182610}} {{ZBL|0142.33903}} </TD></TR><TR><TD valign="top">[a13]</TD> <TD valign="top"> A. Weil, "On some exponential sums" ''Proc. Nat. Acad. Sci.'' , '''34''' (1948) pp. 204–207 {{MR|0027006}} {{ZBL|0032.26102}} </TD></TR></table>

Revision as of 16:30, 24 March 2012

Let denote the upper half-plane, the group of integer matrices of determinant one and

Following H. Maass [a9], let denote the space of bounded functions on that satisfy

for

the Laplace–Beltrami operator (cf. also Laplace operator). Such eigenfunctions are called Maass wave forms. Since in this context is essentially self-adjoint and non-negative (cf. also Self-adjoint operator), it follows that is real and .

A. Selberg conjectured [a12] that there is a lower bound for the smallest (non-zero) eigenvalue: For ,

This innocent looking conjecture is (cf. [a10]) one of the fundamental unsolved questions in the theory of modular forms (as of 2000; cf. also Modular form). For and for small values of , it has been known for some time (Selberg, W. Roelcke). In general, it has many applications to classical number theory (see [a4] and [a12], for example). To back up his conjecture, Selberg also proved the following assertion:

Selberg's approach was to relate this problem to a purely arithmetical question about certain sums of exponentials, called Kloosterman sums (cf. also Exponential sum estimates; Trigonometric sum). This allowed him to invoke results from arithmetic geometry. The key ingredient giving the estimate is a (sharp) bound on Kloosterman sums due to A. Weil [a13]. This bound, in turn, is a consequence of the Riemann hypothesis for the zeta-function of a curve over a finite field, which he had proven earlier (cf. also Riemann hypotheses). On the other hand, to go further than the theorem by this approach one needs to detect cancellations in sums of such Kloosterman sums, and arithmetic geometry offers nothing in this direction. This is the reason that the approach through Kloosterman sums has a natural barrier at . It is interesting that H. Iwaniec [a5] has given a proof of Selberg's theorem which, while still being along the lines of Kloosterman sums, avoids appealing to Weil's bounds.

Presently (2000), Selberg's conjecture is part of the "Ramanujan–Petersson conjecture at infinity" . In other words, if interpreting the Ramanujan–Petersson conjecture as a statement about the irreducible representations of -adic groups inside a cuspidal representation of (see below), Selberg's conjecture will follow as a statement for .

Indeed, first let denote the completion of the rational field with respect to the -adic absolute value , , and view as the completion with respect to . By the adèles, denoted , one means the "restricted" direct product (restricted so that almost every has , i.e., ; cf. also Adèle). Secondly, let denote the space of measurable functions on , where ( "restricted" means , with for almost every ), imbedded diagonally in ,

is the centre of ,

and

for almost every . Now, assuming is an eigenfunction of all Hecke operators , one can define, in a one-to-one way, a function such that the -module generated by the right -translates of is an irreducible subrepresentation of . Then Selberg's conjecture states that the representation of is a principal series with trivial central character and

In other words, complementary series with between and (and between and ) should not occur (cf. [a2]; see also Irreducible representation; Principal series). In this context the Ramanujan–Petersson conjecture says that for (almost every) the same conclusion holds, i.e., for a class-one representation, that is, , satisfies (cf. [a11])

(a1)

P. Deligne proved the original Ramanujan conjecture [a1] when is a holomorphic discrete series of weight . For example, when equals Ramanujan's , the condition (a1) implies

the famous Ramanujan inequality. In general, Deligne was able to exploit algebraic-geometric interpretations of the classical Ramanujan–Petersson identities. Note that for Selberg's conjecture one again assumes that is of class-one and with

It was with this modern representation-theoretic point of view that progress was made on Selberg's theorem.

First, consider the mapping

defined by action of on symmetric tensors of rank . It was conjectured by R.P. Langlands [a8] that there should be a corresponding mapping that (roughly) maps cuspidal automorphic representations of to those "of GLm+ 1" ; moreover, whenever corresponds to class-one representations indexed by

(including possibly ), should correspond to . This conjecture, for all , implies both the Selberg and the Ramanujan–Petersson conjecture. In 1978, S. Gelbart and H. Jacquet [a3] proved Langlands' conjecture for ; for Selberg's conjecture, this simply replaced the equality in his theorem by an inequality. Then, in 1994 [a7], W. Luo, Z. Rudnick and P. Sarnak used and analytic properties of -functions to go well beyond Selberg's conjecture:

And in 2000, H. Kim and F. Shahidi [a6] proved Langlands' conjecture for and established , i.e.,

Either Selberg's conjecture will continue to be proved along the lines of Langlands' conjecture, or by entirely new ideas.

There is a far-reaching generalization of Selberg's conjecture to : If is an irreducible cuspidal automorphic representation of , then every class-one local representation of is "tempered" .

References

[a1] P. Deligne, "La conjecture de Weil I" Publ. Math. IHES , 43 (1974) pp. 273–307 MR0340258 Zbl 0314.14007 Zbl 0287.14001
[a2] I. Gel'fand, M. Graev, I. Piatetski-Shapiro, "Representation theory and automorphic functions" , W.B. Saunders (1969) MR233772 Zbl 0718.11022 Zbl 0138.07201 Zbl 0136.07301 Zbl 0121.30601
[a3] S. Gelbart, H. Jacquet, "A relation between automorphic representations of and " Ann. Sci. École Norm. Sup. , 11 (1978) pp. 471–552 MR0533066 Zbl 0406.10022
[a4] D. Hejhal, "The Selberg trace formula II" , Lecture Notes in Mathematics , 1001 , Springer (1983)
[a5] H. Iwaniec, "Selberg's lower bound for the first eigenvalue of congruence groups" , Number Theory, Trace Formula, Discrete Groups , Acad. Press (1989) pp. 371–375 MR993327
[a6] H. Kim, F. Shahidi, "Functorial products for and functorial symmetric cube for " C.R. Acad. Sci. Paris , 331 : 8 (2000) pp. 599–604 MR1799096 Zbl 1002.11044
[a7] W. Luo, Z. Rudnick, P. Sarnak, "On Selberg's eigenvalue conjecture" Geom. Funct. Anal. , 5 (1995) pp. 387–401 MR1334872
[a8] R.P. Langlands, "Problems in the theory of automorphic forms" , Lectures in Modern Analysis and Applications , Lecture Notes in Mathematics , 170 , Springer (1970) pp. 18–86 MR0302614 Zbl 0225.14022
[a9] H. Maass, "Nichtanalytishe Automorphe Funktionen" Math. Ann. , 121 (1949) pp. 141–183
[a10] P. Sarnak, "Selberg's eigenvalue conjecture" Notices Amer. Math. Soc. , 42 : 4 (1995) pp. 1272–1277
[a11] I. Satake, "Spherical functions and Ramanujan's conjecture" , Algebraic Groups and Discontinuous Subgroups , Proc. Symp. Pure Math. , IX , Amer. Math. Soc. (1966) pp. 258–264 MR211955
[a12] A. Selberg, "On the estimation of Fourier coefficients of modular forms" , Proc. Symp. Pure Math. , VIII , Amer. Math. Soc. (1965) pp. 1–15 MR0182610 Zbl 0142.33903
[a13] A. Weil, "On some exponential sums" Proc. Nat. Acad. Sci. , 34 (1948) pp. 204–207 MR0027006 Zbl 0032.26102
How to Cite This Entry:
Selberg conjecture. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Selberg_conjecture&oldid=15837
This article was adapted from an original article by S. Gelbart (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article