Namespaces
Variants
Actions

Difference between revisions of "Second fundamental form"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
 +
<!--
 +
s0837001.png
 +
$#A+1 = 22 n = 0
 +
$#C+1 = 22 : ~/encyclopedia/old_files/data/S083/S.0803700 Second fundamental form
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
''of a surface''
 
''of a surface''
  
 
The quadratic form in the differentials of the coordinates on the surface which characterizes the local structure of the surface in a neighbourhood of an ordinary point. Let the surface be given by the equation
 
The quadratic form in the differentials of the coordinates on the surface which characterizes the local structure of the surface in a neighbourhood of an ordinary point. Let the surface be given by the equation
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083700/s0837001.png" /></td> </tr></table>
+
$$
 +
\mathbf r  = \mathbf r ( u, v),
 +
$$
 +
 
 +
where  $  u $
 +
and  $  v $
 +
are internal coordinates on the surface; let
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083700/s0837002.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083700/s0837003.png" /> are internal coordinates on the surface; let
+
$$
 +
d \mathbf r  = \mathbf r _ {u}  du + \mathbf r _ {v}  dv
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083700/s0837004.png" /></td> </tr></table>
+
be the differential of the position vector  $  \mathbf r $
 +
along a chosen direction  $  d u / d v $
 +
of displacement from a point  $  M $
 +
to a point  $  M  ^  \prime  $(
 +
see Fig.). Let
  
be the differential of the position vector <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083700/s0837005.png" /> along a chosen direction <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083700/s0837006.png" /> of displacement from a point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083700/s0837007.png" /> to a point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083700/s0837008.png" /> (see Fig.). Let
+
$$
 +
\mathbf n  = \
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083700/s0837009.png" /></td> </tr></table>
+
\frac{\epsilon [ \mathbf r _ {u} , \mathbf r _ {v} ] }{| [ \mathbf r _ {u} , \mathbf r _ {v} ] | }
  
be the unit normal vector to the surface at the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083700/s08370010.png" /> (here <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083700/s08370011.png" /> if the vector triplet <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083700/s08370012.png" /> has right orientation, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083700/s08370013.png" /> in the opposite case). The double principal linear part <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083700/s08370014.png" /> of the deviation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083700/s08370015.png" /> of the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083700/s08370016.png" /> on the surface from the tangent plane at the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083700/s08370017.png" /> is
+
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083700/s08370018.png" /></td> </tr></table>
+
be the unit normal vector to the surface at the point  $  M $(
 +
here  $  \epsilon = + 1 $
 +
if the vector triplet  $  \{ \mathbf r _ {u} , \mathbf r _ {v} , \mathbf n \} $
 +
has right orientation, and  $  \epsilon = - 1 $
 +
in the opposite case). The double principal linear part  $  2 \delta $
 +
of the deviation  $  P M  ^  \prime  $
 +
of the point  $  M\prime $
 +
on the surface from the tangent plane at the point  $  M $
 +
is
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083700/s08370019.png" /></td> </tr></table>
+
$$
 +
\textrm{ II  }  = 2 \delta  = (- d \mathbf r , d \mathbf n ) =
 +
$$
 +
 
 +
$$
 +
= \
 +
( \mathbf r _ {uu} , \mathbf n )  du  ^ {2} + 2 ( \mathbf r _ {uv} ,\
 +
\mathbf n )  du  dv + ( \mathbf r _ {vv} , \mathbf n )  dv  ^ {2} ;
 +
$$
  
 
it is known as the second fundamental form of the surface.
 
it is known as the second fundamental form of the surface.
Line 27: Line 68:
 
The coefficients of the second fundamental form are usually denoted by
 
The coefficients of the second fundamental form are usually denoted by
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083700/s08370020.png" /></td> </tr></table>
+
$$
 +
= ( \mathbf r _ {uu} , \mathbf n ),\ \
 +
= ( \mathbf r _ {uv} , \mathbf n ),\ \
 +
= ( \mathbf r _ {vv} , \mathbf n )
 +
$$
  
 
or, in tensor notation,
 
or, in tensor notation,
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083700/s08370021.png" /></td> </tr></table>
+
$$
 +
(- d \mathbf r , d \mathbf n )  = \
 +
b _ {11}  du  ^ {2} +
 +
2b _ {12}  du  dv +
 +
b _ {22}  dv  ^ {2} .
 +
$$
  
The tensor <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083700/s08370022.png" /> is called the second fundamental tensor of the surface.
+
The tensor $  b _ {ij} $
 +
is called the second fundamental tensor of the surface.
  
 
See [[Fundamental forms of a surface|Fundamental forms of a surface]] for the connection between the second fundamental form and other surface forms.
 
See [[Fundamental forms of a surface|Fundamental forms of a surface]] for the connection between the second fundamental form and other surface forms.
 
 
  
 
====Comments====
 
====Comments====
 
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  W. Blaschke,  K. Leichtweiss,  "Elementare Differentialgeometrie" , Springer  (1973)</TD></TR></table>
+
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  W. Blaschke,  K. Leichtweiss,  "Elementare Differentialgeometrie" , Springer  (1973) {{MR|0350630}} {{ZBL|0264.53001}} </TD></TR></table>

Latest revision as of 08:12, 6 June 2020


of a surface

The quadratic form in the differentials of the coordinates on the surface which characterizes the local structure of the surface in a neighbourhood of an ordinary point. Let the surface be given by the equation

$$ \mathbf r = \mathbf r ( u, v), $$

where $ u $ and $ v $ are internal coordinates on the surface; let

$$ d \mathbf r = \mathbf r _ {u} du + \mathbf r _ {v} dv $$

be the differential of the position vector $ \mathbf r $ along a chosen direction $ d u / d v $ of displacement from a point $ M $ to a point $ M ^ \prime $( see Fig.). Let

$$ \mathbf n = \ \frac{\epsilon [ \mathbf r _ {u} , \mathbf r _ {v} ] }{| [ \mathbf r _ {u} , \mathbf r _ {v} ] | } $$

be the unit normal vector to the surface at the point $ M $( here $ \epsilon = + 1 $ if the vector triplet $ \{ \mathbf r _ {u} , \mathbf r _ {v} , \mathbf n \} $ has right orientation, and $ \epsilon = - 1 $ in the opposite case). The double principal linear part $ 2 \delta $ of the deviation $ P M ^ \prime $ of the point $ M\prime $ on the surface from the tangent plane at the point $ M $ is

$$ \textrm{ II } = 2 \delta = (- d \mathbf r , d \mathbf n ) = $$

$$ = \ ( \mathbf r _ {uu} , \mathbf n ) du ^ {2} + 2 ( \mathbf r _ {uv} ,\ \mathbf n ) du dv + ( \mathbf r _ {vv} , \mathbf n ) dv ^ {2} ; $$

it is known as the second fundamental form of the surface.

Figure: s083700a

The coefficients of the second fundamental form are usually denoted by

$$ L = ( \mathbf r _ {uu} , \mathbf n ),\ \ M = ( \mathbf r _ {uv} , \mathbf n ),\ \ N = ( \mathbf r _ {vv} , \mathbf n ) $$

or, in tensor notation,

$$ (- d \mathbf r , d \mathbf n ) = \ b _ {11} du ^ {2} + 2b _ {12} du dv + b _ {22} dv ^ {2} . $$

The tensor $ b _ {ij} $ is called the second fundamental tensor of the surface.

See Fundamental forms of a surface for the connection between the second fundamental form and other surface forms.

Comments

References

[a1] W. Blaschke, K. Leichtweiss, "Elementare Differentialgeometrie" , Springer (1973) MR0350630 Zbl 0264.53001
How to Cite This Entry:
Second fundamental form. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Second_fundamental_form&oldid=12634
This article was adapted from an original article by A.B. Ivanov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article