Schur complement
From Encyclopedia of Mathematics
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.
2020 Mathematics Subject Classification: Primary: 15A24 [MSN][ZBL]
Let $M$ be a square matrix over a fixed ground field, partitioned in block form as $$ M = \left({ \begin{array}{cc} P & Q \\ R & S \end{array} }\right) \ , $$ where $P$ is a square non-singular submatrix.
The complement of $P$ is $$ M/P = S - R P^{-1} Q \ . $$
The Schur determinant lemma may be expressed in the form $$ \det(M) = \det(P) \det(M/P) \ . $$
References
- Hogben, Leslie. Handbook of linear algebra (2nd enlarged ed.) Discrete Mathematics and its Applications, Chapman & Hall/CRC (2014) ISBN 978-1-4665-0728-9 Zbl 1284.15001
- Zhang, Fuzhen (ed.) The Schur complement and its applications, Numerical Methods and Algorithms 4 Springer (2005) ISBN 0-387-24271-6Zbl 1075.15002
How to Cite This Entry:
Schur complement. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Schur_complement&oldid=54384
Schur complement. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Schur_complement&oldid=54384