Rotation surface

From Encyclopedia of Mathematics
Revision as of 17:26, 7 February 2011 by (talk) (Importing text file)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

surface of rotation, rotational surface

A surface generated by the rotation of a plane curve around an axis in its plane. If is defined by the equations , , the position vector of the surface of rotation is , where is the parameter of the curve , is the distance between a point on the surface and the axis of rotation and is the angle of rotation. The line element of the surface of rotation is

The Gaussian curvature is , the mean curvature is , where , . The lines are called parallels of the surface of rotation and are circles located in a plane normal to the axis of rotation, with their centres on this axis. The lines are called meridians; they are all congruent to the rotating curve and lie in planes passing through the axis of rotation. The meridians and the parallels of a surface of rotation are its curvature lines and form an isothermal net.

A surface of rotation allows for a deformation into another surface of rotation, under which its net of curvature lines is preserved and therefore is a principal base of the deformation. The umbilical points (cf. Umbilical point) of a surface of rotation are characterized by the property that the centre of curvature of the meridian lies on the axis of rotation. The product of the radius of a parallel by the cosine of the angle of intersection of the surface of rotation with the parallel is constant along a geodesic (Clairaut's theorem).

The only minimal surface of rotation is the catenoid. A ruled surface of rotation is a one-sheet hyperboloid or one of its degeneracies: a cylinder, a cone or a plane. A surface of rotation with more than one axis of rotation is a sphere or a plane.

The metric of a surface of rotation can be presented in the form


For the existence of metrics of the form (1) and for isometric immersions of these in as surfaces of rotation see [1].


[1] I.Kh. Sabitov, , Abstracts Coll. Diff. Geom. (August 1989, Eger, Hungary) pp. 47–48



[a1] M. Berger, B. Gostiaux, "Differential geometry: manifolds, curves, and surfaces" , Springer (1988) (Translated from French)
[a2] M.P. Do Carmo, "Differential geometry of curves and surfaces" , Prentice-Hall (1976) pp. 145
[a3] M. Spivak, "A comprehensive introduction to differential geometry" , 1979 , Publish or Perish pp. 1–5
[a4] K. Leichtweiss, "Einführung in die Differentialgeometrie" , Springer (1973)
How to Cite This Entry:
Rotation surface. Encyclopedia of Mathematics. URL:
This article was adapted from an original article by I.Kh. Sabitov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article