Namespaces
Variants
Actions

Rotation number

From Encyclopedia of Mathematics
Revision as of 08:12, 6 June 2020 by Ulf Rehmann (talk | contribs) (tex encoded by computer)
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.


This page is deficient and requires revision. Please see Talk:Rotation number for further comments.

Let $ c: [ a, b] \rightarrow \mathbf R ^ {2} $ be a regular curve, i.e. $ c( t) $ is smooth and $ \dot{c} ( t) \neq 0 $ for all $ t \in [ a, b] $. Then there is a continuous piecewise-differentiable function $ \theta ( t) $ such that $ \dot{c} ( t) / | \dot{c} ( t) | $, the normalized velocity vector at $ c( t) $, is equal to $ ( \cos \theta ( t), \sin \theta ( t)) $. Moreover, the difference $ \theta ( b) - \theta ( a) $ is independent of the choice of $ \theta $.

Figure: r082650a

Now, let $ c: [ 0, A] \rightarrow \mathbf R ^ {2} $ be a piecewise-smooth regular closed curve and let $ 0= b _ {-} 1 = a _ {0} < b _ {0} = a _ {1} < \dots < b _ {k} = A $ partition $ [ 0, A] $ into intervals such that $ c $ restricted to $ [ a _ {j} , b _ {j} ] $ is differentiable for all $ j $. Let $ \alpha _ {j} $ be the exterior angle between the tangent vectors at the corner at $ c( b _ {j-} 1 ) = c( a _ {j} ) $, i.e. $ \alpha _ {j} $ is the angle between $ \dot{c} ( b _ {j-} 1 - ) $ and $ \dot{c} ( a _ {j} +) $( with $ - \pi < \alpha _ {j} \leq \pi $). The number

$$ n _ {c} = \frac{1}{2 \pi } \sum _ { j } ( \theta _ {j} ( b _ {j} ) - \theta _ {j} ( a _ {j} )) + \frac{1}{2 \pi } \sum _ { j } \alpha _ {j} $$

is called the rotation number of the curve $ c $.

If $ \mathbf R ^ {2} $ is identified with the complex plane $ \mathbf C $ and $ c $ is smooth (so that all $ \alpha _ {j} $ are zero), then $ n _ {c} $ is the winding number of the closed curve $ t \mapsto \dot{c} ( t) / | \dot{c} ( t) | $ with respect to the origin.

Let $ c: [ 0, A] \rightarrow \mathbf R ^ {2} $ be piecewise-smooth, regular, closed, and simple (i.e. no self-intersections), and suppose that the exterior angles are always $ \neq \pi $ in absolute value. Then the so-called Umlaufsatz says that $ n _ {c} = \pm 1 $, depending on the orientation. From this it is easy to calculate the $ n _ {c} $ of closed curves with self-intersections. For instance, the rotation number of the figure eight curve is zero.

It readily follows from these results that, e.g., the sum of the interior angles of a convex $ n $- gon is $ ( n- 2) \pi $. There also result the various formulas for triangles (and other figures) made up of circle segments, such as $ \alpha _ {1} + \alpha _ {2} + \alpha _ {3} + \beta _ {1} + \beta _ {2} + \beta _ {3} = 180 \circ $ in the case of the circle segment triangle depicted on the left in Fig.a2; and $ - \alpha _ {1} + \alpha _ {2} + \alpha _ {3} - \beta _ {1} + \beta _ {2} + \beta _ {3} = 180 \circ $ for the circle segment triangle depicted on the right in Fig.a2. Here the $ \beta _ {i} $ denote the number of degrees of the circle segments in question, $ 0 \leq \beta _ {i} \leq 360 \circ $, $ i= 1, 2, 3 $.

Figure: r082650b

For more on the planar geometry of circle segment triangles and such, see, e.g., [a2], [a3].

References

[a1] W. Klingenberg, "A course in differential geometry" , Springer (1978) pp. §2.1 (Translated from German)
[a2] L. Bieberbach, "Zur Euklidischen Geometrie der Kreisbogendreiecke" Math. Ann. , 130 (1955) pp. 46–86
[a3] W.K.B. Holz, "Das ebene obere Dreieck. Eine Aufgabestellung" , Selbstverlag Hagen (1944)
[a4] H. Hopf, "Über die Drehung der Tangenten und Sehen ebener Kurven" Compositio Math. , 2 (1935) pp. 50–62
How to Cite This Entry:
Rotation number. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Rotation_number&oldid=48590