Namespaces
Variants
Actions

Difference between revisions of "Rotation"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (tex encoded by computer)
m (Undo revision 48587 by Ulf Rehmann (talk))
Tag: Undo
Line 1: Line 1:
<!--
 
r0826201.png
 
$#A+1 = 38 n = 0
 
$#C+1 = 38 : ~/encyclopedia/old_files/data/R082/R.0802620 Rotation
 
Automatically converted into TeX, above some diagnostics.
 
Please remove this comment and the {{TEX|auto}} line below,
 
if TeX found to be correct.
 
-->
 
 
{{TEX|auto}}
 
{{TEX|done}}
 
 
 
A special kind of [[Motion|motion]], for which at least one point in space remains at rest. If the rotation is in a plane, the fixed point is called the centre of the rotation; if the rotation is in space, the fixed straight line is called the axis of rotation. A rotation in a Euclidean space is called proper (a rotation of the first kind) or improper (a rotation of the second kind) depending on whether or not the [[Orientation|orientation]] in space remains unchanged.
 
A special kind of [[Motion|motion]], for which at least one point in space remains at rest. If the rotation is in a plane, the fixed point is called the centre of the rotation; if the rotation is in space, the fixed straight line is called the axis of rotation. A rotation in a Euclidean space is called proper (a rotation of the first kind) or improper (a rotation of the second kind) depending on whether or not the [[Orientation|orientation]] in space remains unchanged.
  
A proper rotation in a plane can be analytically expressed in Cartesian orthogonal coordinates $  x, y $
+
A proper rotation in a plane can be analytically expressed in Cartesian orthogonal coordinates <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082620/r0826201.png" /> by the formulas
by the formulas
 
  
$$
+
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082620/r0826202.png" /></td> </tr></table>
\widetilde{x}  = x  \cos  \phi - y  \sin  \phi ,\ \
 
\widetilde{y}  = x  \sin  \phi + y  \cos  \phi ,
 
$$
 
  
where $  \phi $
+
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082620/r0826203.png" /> is the rotation angle and the centre of the rotation is the coordinate origin. A proper rotation through an angle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082620/r0826204.png" /> may be represented as the product of two axial symmetries (reflections, cf. [[Reflection|Reflection]]) with axes forming an angle of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082620/r0826205.png" /> with each other. An improper rotation in a plane can be analytically expressed in Cartesian orthogonal coordinates <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082620/r0826206.png" /> by the formulas
is the rotation angle and the centre of the rotation is the coordinate origin. A proper rotation through an angle $  \phi $
 
may be represented as the product of two axial symmetries (reflections, cf. [[Reflection|Reflection]]) with axes forming an angle of $  \phi / 2 $
 
with each other. An improper rotation in a plane can be analytically expressed in Cartesian orthogonal coordinates $  x, y $
 
by the formulas
 
  
$$
+
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082620/r0826207.png" /></td> </tr></table>
\widetilde{x}  = x  \cos  \phi + y  \sin  \phi ,\ \
 
\widetilde{y}  = x  \sin  \phi - y  \cos  \phi ,
 
$$
 
  
where $  \phi $
+
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082620/r0826208.png" /> is the rotation angle and the centre of the rotation is the coordinate origin. An improper rotation in a plane may be represented as a product of a proper rotation by an axial symmetry.
is the rotation angle and the centre of the rotation is the coordinate origin. An improper rotation in a plane may be represented as a product of a proper rotation by an axial symmetry.
 
  
A rotation in an $  n $-
+
A rotation in an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082620/r0826209.png" />-dimensional Euclidean space can be analytically expressed by an [[Orthogonal matrix|orthogonal matrix]] in canonical form:
dimensional Euclidean space can be analytically expressed by an [[Orthogonal matrix|orthogonal matrix]] in canonical form:
 
  
$$
+
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082620/r08262010.png" /></td> </tr></table>
= \left \|
 
  
 
where
 
where
  
$$
+
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082620/r08262011.png" /></td> </tr></table>
u _ {i}  = \
 
\left \|
 
  
$  \epsilon  ^ {s} $
+
<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082620/r08262012.png" /> is the identity matrix of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082620/r08262013.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082620/r08262014.png" />). The following cases are possible:
is the identity matrix of order $  s $(
 
$  s= p, q $).  
 
The following cases are possible:
 
  
1) $  p = n $—  
+
1) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082620/r08262015.png" /> — the identity transformation;
the identity transformation;
 
  
2) $  q = n $—  
+
2) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082620/r08262016.png" /> — the rotation is a central symmetry;
the rotation is a central symmetry;
 
  
3) $  p + q = n $—  
+
3) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082620/r08262017.png" /> — the rotation is a symmetry with respect to a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082620/r08262018.png" />-plane (a reflection in a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082620/r08262019.png" />-plane);
the rotation is a symmetry with respect to a $  p $-
 
plane (a reflection in a $  p $-
 
plane);
 
  
4) $  M $
+
4) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082620/r08262020.png" /> does not contain submatrices <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082620/r08262021.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082620/r08262022.png" /> — the rotation is called a rotation around a unique fixed point;
does not contain submatrices $  \epsilon  ^ {p} $
 
and $  - \epsilon  ^ {q} $—  
 
the rotation is called a rotation around a unique fixed point;
 
  
5) $  M $
+
5) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082620/r08262023.png" /> contains the submatrices <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082620/r08262024.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082620/r08262025.png" /> but does not contain the submatrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082620/r08262026.png" /> — the rotation is a rotation around a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082620/r08262028.png" />-plane;
contains the submatrices $  u _ {i} $
 
and $  \epsilon  ^ {p} $
 
but does not contain the submatrix $  - \epsilon  ^ {q} $—  
 
the rotation is a rotation around a $  p $-
 
plane;
 
  
6) $  M $
+
6) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082620/r08262029.png" /> contains the submatrices <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082620/r08262030.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082620/r08262031.png" /> but does not contain the submatrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082620/r08262032.png" /> — the rotation is called a rotational reflection in an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082620/r08262034.png" />-plane.
contains the submatrices $  u _ {i} $
 
and $  - \epsilon  ^ {q} $
 
but does not contain the submatrix $  \epsilon  ^ {p} $—  
 
the rotation is called a rotational reflection in an $  ( n - q) $-
 
plane.
 
  
The rotations of a Euclidean space around a given point form a group with respect to multiplication of rotations. This group is isomorphic to the group of orthogonal transformations (cf. [[Orthogonal transformation|Orthogonal transformation]]) of the vector space $  \mathbf R  ^ {n} $
+
The rotations of a Euclidean space around a given point form a group with respect to multiplication of rotations. This group is isomorphic to the group of orthogonal transformations (cf. [[Orthogonal transformation|Orthogonal transformation]]) of the vector space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082620/r08262035.png" /> or to the group of orthogonal matrices of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082620/r08262036.png" /> over the field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082620/r08262037.png" />. The rotation group of the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082620/r08262038.png" /> is an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082620/r08262039.png" />-dimensional Lie group with an intransitive action on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082620/r08262040.png" />.
or to the group of orthogonal matrices of order $  n $
 
over the field $  \mathbf R $.  
 
The rotation group of the space $  E _ {n} $
 
is an $  n( n - 1)/2 $-
 
dimensional Lie group with an intransitive action on $  E _ {n} $.
 
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  B.A. Rozenfel'd,  "Multi-dimensional spaces" , Moscow  (1966)  (In Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  B.A. Rozenfel'd,  "Non-Euclidean spaces" , Moscow  (1969)  (In Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  P.A. Shirokov,  "Tensor calculus. Tensor algebra" , Kazan'  (1961)  (In Russian)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  B.A. Rozenfel'd,  "Multi-dimensional spaces" , Moscow  (1966)  (In Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  B.A. Rozenfel'd,  "Non-Euclidean spaces" , Moscow  (1969)  (In Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  P.A. Shirokov,  "Tensor calculus. Tensor algebra" , Kazan'  (1961)  (In Russian)</TD></TR></table>
 +
 +
  
 
====Comments====
 
====Comments====
 +
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  M. Berger,  "Geometry" , '''I''' , Springer  (1987)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  H.S.M. Coxeter,  "Introduction to geometry" , Wiley  (1963)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  M. Greenberg,  "Euclidean and non-Euclidean geometry" , Freeman  (1980)  pp. 105</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  B.A. [B.A. Rozenfel'd] Rosenfel'd,  "A history of non-euclidean geometry" , Springer  (1988)  (Translated from Russian)</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top">  B. Artmann,  "Lineare Algebra" , Birkhäuser  (1986)</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top">  P.R. Halmos,  "Finite-dimensional vector spaces" , v. Nostrand  (1958)</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  M. Berger,  "Geometry" , '''I''' , Springer  (1987)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  H.S.M. Coxeter,  "Introduction to geometry" , Wiley  (1963)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  M. Greenberg,  "Euclidean and non-Euclidean geometry" , Freeman  (1980)  pp. 105</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  B.A. [B.A. Rozenfel'd] Rosenfel'd,  "A history of non-euclidean geometry" , Springer  (1988)  (Translated from Russian)</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top">  B. Artmann,  "Lineare Algebra" , Birkhäuser  (1986)</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top">  P.R. Halmos,  "Finite-dimensional vector spaces" , v. Nostrand  (1958)</TD></TR></table>

Revision as of 14:53, 7 June 2020

A special kind of motion, for which at least one point in space remains at rest. If the rotation is in a plane, the fixed point is called the centre of the rotation; if the rotation is in space, the fixed straight line is called the axis of rotation. A rotation in a Euclidean space is called proper (a rotation of the first kind) or improper (a rotation of the second kind) depending on whether or not the orientation in space remains unchanged.

A proper rotation in a plane can be analytically expressed in Cartesian orthogonal coordinates by the formulas

where is the rotation angle and the centre of the rotation is the coordinate origin. A proper rotation through an angle may be represented as the product of two axial symmetries (reflections, cf. Reflection) with axes forming an angle of with each other. An improper rotation in a plane can be analytically expressed in Cartesian orthogonal coordinates by the formulas

where is the rotation angle and the centre of the rotation is the coordinate origin. An improper rotation in a plane may be represented as a product of a proper rotation by an axial symmetry.

A rotation in an -dimensional Euclidean space can be analytically expressed by an orthogonal matrix in canonical form:

where

is the identity matrix of order (). The following cases are possible:

1) — the identity transformation;

2) — the rotation is a central symmetry;

3) — the rotation is a symmetry with respect to a -plane (a reflection in a -plane);

4) does not contain submatrices and — the rotation is called a rotation around a unique fixed point;

5) contains the submatrices and but does not contain the submatrix — the rotation is a rotation around a -plane;

6) contains the submatrices and but does not contain the submatrix — the rotation is called a rotational reflection in an -plane.

The rotations of a Euclidean space around a given point form a group with respect to multiplication of rotations. This group is isomorphic to the group of orthogonal transformations (cf. Orthogonal transformation) of the vector space or to the group of orthogonal matrices of order over the field . The rotation group of the space is an -dimensional Lie group with an intransitive action on .

References

[1] B.A. Rozenfel'd, "Multi-dimensional spaces" , Moscow (1966) (In Russian)
[2] B.A. Rozenfel'd, "Non-Euclidean spaces" , Moscow (1969) (In Russian)
[3] P.A. Shirokov, "Tensor calculus. Tensor algebra" , Kazan' (1961) (In Russian)


Comments

References

[a1] M. Berger, "Geometry" , I , Springer (1987)
[a2] H.S.M. Coxeter, "Introduction to geometry" , Wiley (1963)
[a3] M. Greenberg, "Euclidean and non-Euclidean geometry" , Freeman (1980) pp. 105
[a4] B.A. [B.A. Rozenfel'd] Rosenfel'd, "A history of non-euclidean geometry" , Springer (1988) (Translated from Russian)
[a5] B. Artmann, "Lineare Algebra" , Birkhäuser (1986)
[a6] P.R. Halmos, "Finite-dimensional vector spaces" , v. Nostrand (1958)
How to Cite This Entry:
Rotation. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Rotation&oldid=48587
This article was adapted from an original article by V.T. Bazylev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article