Namespaces
Variants
Actions

Difference between revisions of "Risk of a statistical procedure"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
 +
<!--
 +
r0824901.png
 +
$#A+1 = 26 n = 0
 +
$#C+1 = 26 : ~/encyclopedia/old_files/data/R082/R.0802490 Risk of a statistical procedure
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
A characteristic giving the mean loss of an experimenter in a problem of statistical decision making and thus defining the quality of the statistical procedure under consideration.
 
A characteristic giving the mean loss of an experimenter in a problem of statistical decision making and thus defining the quality of the statistical procedure under consideration.
  
Suppose that one has to make a decision <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082490/r0824901.png" /> in a measurable decision space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082490/r0824902.png" /> with respect to a parameter <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082490/r0824903.png" /> on the basis of a realization of a random variable <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082490/r0824904.png" /> with values in a sampling space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082490/r0824905.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082490/r0824906.png" />. Further, let the loss of a statistician caused by making the decision <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082490/r0824907.png" /> when the random variable <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082490/r0824908.png" /> follows the law <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082490/r0824909.png" /> be <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082490/r08249010.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082490/r08249011.png" /> is some loss function given on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082490/r08249012.png" />. In this case, if the statistician uses a non-randomized [[Decision-function(2)|decision function]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082490/r08249013.png" /> in the problem of decision making, then as a characteristic of this function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082490/r08249014.png" /> the function
+
Suppose that one has to make a decision $  d $
 +
in a measurable decision space $  ( D, {\mathcal A}) $
 +
with respect to a parameter $  \theta $
 +
on the basis of a realization of a random variable $  X $
 +
with values in a sampling space $  ( \mathfrak X, \mathfrak B, {\mathsf P} _  \theta  ) $,  
 +
$  \theta \in \Theta $.  
 +
Further, let the loss of a statistician caused by making the decision $  d $
 +
when the random variable $  X $
 +
follows the law $  {\mathsf P} _  \theta  $
 +
be $  L( \theta , d) $,  
 +
where $  L $
 +
is some loss function given on $  \Theta \times D $.  
 +
In this case, if the statistician uses a non-randomized [[Decision-function(2)|decision function]] $  \delta : \mathfrak X \rightarrow D $
 +
in the problem of decision making, then as a characteristic of this function $  \delta $
 +
the function
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082490/r08249015.png" /></td> </tr></table>
+
$$
 +
R( \theta , \delta )  = {\mathsf E} _  \theta  L( \theta , \delta ( X))  = \
 +
\int\limits _ { \mathfrak X } L( \theta , \delta ( X))  d {\mathsf P} _  \theta  ( x)
 +
$$
  
is used. It is called the risk function or, simply, the risk, of the statistical procedure based on the decision function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082490/r08249016.png" /> with respect to the loss <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082490/r08249017.png" />.
+
is used. It is called the risk function or, simply, the risk, of the statistical procedure based on the decision function $  \delta $
 +
with respect to the loss $  L $.
  
The concept of risk allows one to introduce a partial order on the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082490/r08249018.png" /> of all non-randomized decision functions, since it is assumed that between two different decision functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082490/r08249019.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082490/r08249020.png" /> one should prefer <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082490/r08249021.png" /> if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082490/r08249022.png" /> uniformly over all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082490/r08249023.png" />.
+
The concept of risk allows one to introduce a partial order on the set $  \Delta = \{ \delta \} $
 +
of all non-randomized decision functions, since it is assumed that between two different decision functions $  \delta _ {1} $
 +
and $  \delta _ {2} $
 +
one should prefer $  \delta _ {1} $
 +
if $  R( \theta , \delta _ {1} ) \leq  R( \theta , \delta _ {2} ) $
 +
uniformly over all $  \theta $.
  
If the decision function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082490/r08249024.png" /> is randomized, the risk of the statistical procedure is defined by the formula
+
If the decision function $  \delta $
 +
is randomized, the risk of the statistical procedure is defined by the formula
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082490/r08249025.png" /></td> </tr></table>
+
$$
 +
R( \theta , \delta )  = \int\limits _ { \mathfrak X } \int\limits _ { D } L( \theta , d)  dQ _ {x} ( d)  d
 +
{\mathsf P} _  \theta  ( x),
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082490/r08249026.png" /> is the family of Markov transition probability distributions determining the randomization procedure.
+
where $  \{ Q _ {x} ( d) \} $
 +
is the family of Markov transition probability distributions determining the randomization procedure.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  E.L. Lehmann,  "Testing statistical hypotheses" , Wiley  (1986)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  N.N. Chentsov,  "Statistical decision rules and optimal inference" , Amer. Math. Soc.  (1982)  (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  A. Wald,  "Statistical decision functions" , Wiley  (1950)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  E.L. Lehmann,  "Testing statistical hypotheses" , Wiley  (1986)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  N.N. Chentsov,  "Statistical decision rules and optimal inference" , Amer. Math. Soc.  (1982)  (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  A. Wald,  "Statistical decision functions" , Wiley  (1950)</TD></TR></table>

Latest revision as of 08:11, 6 June 2020


A characteristic giving the mean loss of an experimenter in a problem of statistical decision making and thus defining the quality of the statistical procedure under consideration.

Suppose that one has to make a decision $ d $ in a measurable decision space $ ( D, {\mathcal A}) $ with respect to a parameter $ \theta $ on the basis of a realization of a random variable $ X $ with values in a sampling space $ ( \mathfrak X, \mathfrak B, {\mathsf P} _ \theta ) $, $ \theta \in \Theta $. Further, let the loss of a statistician caused by making the decision $ d $ when the random variable $ X $ follows the law $ {\mathsf P} _ \theta $ be $ L( \theta , d) $, where $ L $ is some loss function given on $ \Theta \times D $. In this case, if the statistician uses a non-randomized decision function $ \delta : \mathfrak X \rightarrow D $ in the problem of decision making, then as a characteristic of this function $ \delta $ the function

$$ R( \theta , \delta ) = {\mathsf E} _ \theta L( \theta , \delta ( X)) = \ \int\limits _ { \mathfrak X } L( \theta , \delta ( X)) d {\mathsf P} _ \theta ( x) $$

is used. It is called the risk function or, simply, the risk, of the statistical procedure based on the decision function $ \delta $ with respect to the loss $ L $.

The concept of risk allows one to introduce a partial order on the set $ \Delta = \{ \delta \} $ of all non-randomized decision functions, since it is assumed that between two different decision functions $ \delta _ {1} $ and $ \delta _ {2} $ one should prefer $ \delta _ {1} $ if $ R( \theta , \delta _ {1} ) \leq R( \theta , \delta _ {2} ) $ uniformly over all $ \theta $.

If the decision function $ \delta $ is randomized, the risk of the statistical procedure is defined by the formula

$$ R( \theta , \delta ) = \int\limits _ { \mathfrak X } \int\limits _ { D } L( \theta , d) dQ _ {x} ( d) d {\mathsf P} _ \theta ( x), $$

where $ \{ Q _ {x} ( d) \} $ is the family of Markov transition probability distributions determining the randomization procedure.

References

[1] E.L. Lehmann, "Testing statistical hypotheses" , Wiley (1986)
[2] N.N. Chentsov, "Statistical decision rules and optimal inference" , Amer. Math. Soc. (1982) (Translated from Russian)
[3] A. Wald, "Statistical decision functions" , Wiley (1950)
How to Cite This Entry:
Risk of a statistical procedure. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Risk_of_a_statistical_procedure&oldid=12130
This article was adapted from an original article by M.S. Nikulin (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article