# Right group

A semi-group which is right simple (cf. Simple semi-group) and satisfies the left cancellation law. Every right group is a completely-simple semi-group. The property that a semi-group is a right group is equivalent to any of the following conditions: a) is right simple and contains an idempotent element; b) is regular (cf. Regular semi-group) and satisfies the left cancellation law; c) can be partitioned into left ideals which are (necessarily isomorphic) groups; and d) is the direct product of a group and a right zero semi-group (cf. Idempotents, semi-group of). The notion of a left group is similar to that of a right group. Only groups are simultaneously right groups and left groups. Every completely-simple semi-group can be partitioned into right (left) ideals which are (necessarily isomorphic) right (left) groups.

#### References

[1] | A.H. Clifford, G.B. Preston, "Algebraic theory of semi-groups" , 1–2 , Amer. Math. Soc. (1961–1967) |

**How to Cite This Entry:**

Right group.

*Encyclopedia of Mathematics.*URL: http://encyclopediaofmath.org/index.php?title=Right_group&oldid=17373