Namespaces
Variants
Actions

Riesz decomposition theorem

From Encyclopedia of Mathematics
Revision as of 17:16, 7 February 2011 by 127.0.0.1 (talk) (Importing text file)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

There are two different theorems that go by this name.

Riesz decomposition theorem for super- or subharmonic functions.

Roughly speaking, this asserts that a super- or subharmonic function is the sum of a potential and a harmonic function. For precise statements, see Subharmonic function (where it is called the Riesz local representation theorem), and Riesz theorem (where it is simply called the Riesz theorem), [a12], [a20]. See also [a8], 1.IV.8–9, 1.IX.11, 1.XIV.9, and [a8], 1.XV.7, 1.XVII.7, for a corresponding result for superparabolic functions. In [a4] the decomposition formula is called the Riesz integral representation and Riesz representation of a superharmonic function

There is also an abstract version (see also Potential theory, abstract), dealing with harmonic spaces, which states (see [a5], Thm. 2.2.2, p. 38) that every superharmonic function on a harmonic space which has a subharmonic minorant may be written uniquely as the sum of a potential and a harmonic function. This harmonic function is the greatest hypo-harmonic minorant of and is the infimum of any Perron set generated by .

An immediate consequence is the Brelot–Bauer theorem ([a5], Corol. 2.2.1, p. 38) that the real vector space of differences of positive harmonic functions on a harmonic space is a conditionally complete vector lattice (Riesz space) with respect to the natural order (i.e., pointwise comparison). This gives a link with the Riesz decomposition property.

There is also a converse Riesz decomposition theorem, [a11].

In the mid-1950s, the pioneering work of J.L. Doob and G.A. Hunt, [a7], [a14], [a15], [a16], showed a deep connection between potential theory and stochastic processes. Correspondingly, there are probabilistic Riesz decomposition theorems on decompositions of excessive functions, excessive measures and super-martingales. See [a3], [a9], [a8], 2.III.21, for precise formulations. There are also versions of these on commutative and non-commutative groups, [a1], [a2], [a6].

Riesz decomposition theorem for operators.

This theorem is also called the Riesz splitting theorem and deals with splitting the spectrum of an operator. Following [a10], p. 9ff, let be a bounded linear operator on a Banach space with spectrum . Let be an isolated part of , i.e. and are both closed in . Let

where is a contour in the resolvent set of with in its interior and separating from . Then is a projection (i.e. ), called the Riesz projection or Riesz projector (cf. also Spectral synthesis (for a single point) and Krein space). Put , . Then , both and are invariant under , and , .

If, moreover, is the disjoint union of two closed subsets and , then , .

For more general results (for closed linear operators), see [a10], p. 326ff. See also Functional calculus (particularly the part dealing with the Riesz–Dunford functional calculus) and, e.g., [a13].

F. Riesz himself, to whom the original result is due, called it the Zerlegungssatz.

References

[a1] M. Banalescu, "On the Riesz decomposition property" Rev. Roum. Math. Pures Appl. , 36 (1991) pp. 107–114
[a2] Ch. Berg, G. Frost, "Potential theory on locally compact Abelian groups" , Springer (1975) pp. 148
[a3] R.M. Blumenthal, R.K. Getoor, "Markov processes and potential theory" , Acad. Press (1968) pp. 272, Thm. 2.11
[a4] M. Brelot, "On topologies and boundaries in potential theory" , Springer (1971) pp. 93; 45
[a5] C. Constantinescu, A. Cornea, "Potential theory on harmonic spaces" , Springer (1972)
[a6] J. Deny, "Noyaux de convolution de Hunt et noyaux associes à une famille fondamentale" Ann. Inst. Fourier (Grenoble) , 12 (1962) pp. 643–667
[a7] J.L. Doob, "Semimartingales and subharmonic functions" Trans. Amer. Math. Soc. , 77 (1954) pp. 86–121
[a8] J.L. Doob, "Classical potential theory and its probabilistic counterpart" , Springer (1984)
[a9] R.K. Getoor, J. Glover, "Riesz decompositions in Markov process theory" Trans. Amer. Math. Soc. , 285 (1984) pp. 107–132
[a10] I. Gohberg, S. Goldberg, M.A. Kaashoek, "Classes of linear operators" , I , Birkhäuser (1990)
[a11] M. Goldstein, W.H. Ow, "A converse of the Riesz decomposition theorem for harmonic spaces" Math. Z. , 173 (1980) pp. 105–109
[a12] W.K. Hayman, P.B. Kennedy, "Subharmonic functions" , I , Acad. Press (1976) pp. Sect. 3.5
[a13] E. Hille, "Methods in classical and functional analysis" , Addison-Wesley (1972) pp. 349–350
[a14] G.A. Hunt, "Markoff processes and potentials I" Illinois J. Math. , 1 (1957) pp. 44–93
[a15] G.A. Hunt, "Markoff processes and potentials II" Illinois J. Math. , 1 (1957) pp. 316–369
[a16] G.A. Hunt, "Markoff processes and potentials III" Illinois J. Math. , 2 (1958) pp. 151–213
[a17] F. Riesz, "Sur les fonctions subharmoniques et leur rapport à la theorie du potentiel I" Acta Math. , 48 (1926) pp. 329–343
[a18] F. Riesz, "Sur les fonctions subharmoniques et leur rapport à la theorie du potentiel II" Acta Math. , 54 (1930) pp. 321–360
[a19] F. Riesz, "Über die linearen Transformationen des komplexen Hilbertschen Raumes" Acta Sci. Math. (Szeged) , 5 (1930/32) pp. 23–54
[a20] E.B. Saff, V. Totik, "Logarithmic potentials and external fields" , Springer (1997) pp. 100
How to Cite This Entry:
Riesz decomposition theorem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Riesz_decomposition_theorem&oldid=16314
This article was adapted from an original article by M. Hazewinkel (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article