Riemann hypotheses

From Encyclopedia of Mathematics
Revision as of 17:02, 7 February 2011 by (talk) (Importing text file)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

in analytic number theory

Five conjectures, formulated by B. Riemann (1876), concerning the distribution of the non-trivial zeros of the zeta-function , and the expression via these zeros of the number of prime numbers not exceeding a real number . One of the Riemann hypotheses has neither been proved nor disproved: All non-trivial zeros of the zeta-function lie on the straight line .


For the list of all 5 conjectures see Zeta-function.


[a1] A. Ivic, "The Riemann zeta-function" , Wiley (1985)
[a2] E.C. Titchmarsh, "The theory of the Riemann zeta-function" , Clarendon Press (1951)
[a3] H.M. Edwards, "Riemann's zeta function" , Acad. Press (1974) pp. Chapt. 3
How to Cite This Entry:
Riemann hypotheses. Encyclopedia of Mathematics. URL:
This article was adapted from an original article by A.F. Lavrik (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article