Namespaces
Variants
Actions

Riemann function

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.


The Riemann function in the theory of trigonometric series is a function introduced by B. Riemann (1851) (see [1]) for studying the problem of the representation of a function by a trigonometric series. Let a series

$$ \tag{* } \frac{a _ {0} }{2} + \sum _ { n= 1} ^ \infty ( a _ {n} \cos nx + b _ {n} \sin nx ) $$

with bounded sequences $ \{ a _ {n} \} , \{ b _ {n} \} $ be given. The Riemann function for this series is the function $ F $ obtained by twice term-by-term integration of the series:

$$ F( x) = \frac{a _ {0} x ^ {2} }{4} - \sum _ { n= 1 }^ \infty \frac{1}{n ^ {2} } ( a _ {n} \cos nx + b _ {n} \sin nx ) + Cx + D, $$

$$ C, D = \textrm{ const } . $$

Riemann's first theorem: Let the series (*) converge at a point $ x _ {0} $ to a number $ S $. The Schwarzian derivative (cf. Riemann derivative) $ D _ {2} F( x _ {0} ) $ then equals $ S $. Riemann's second theorem: Let $ a _ {n} , b _ {n} \rightarrow 0 $ as $ n \rightarrow \infty $. Then at any point $ x $,

$$ \lim\limits _ {n \rightarrow \infty } \frac{F( x+ h) + F( x- h) - 2F( x) }{h} = 0; $$

moreover, the convergence is uniform on any interval, that is, $ F $ is a uniformly smooth function.

If the series (*) converges on $ [ 0, 2 \pi ] $ to $ f( x) $ and if $ f \in L[ 0, 2 \pi ] $, then $ D _ {2} F( x) = f( x) $ for each $ x \in [ 0, 2 \pi ] $ and

$$ F( x) = \int\limits _ { 0 } ^ { x } dt \int\limits _ { 0 } ^ { t } f( u) du + Cx + D. $$

Let $ a _ {n} , b _ {n} $ be real numbers tending to $ 0 $ as $ n \rightarrow \infty $, let

$$ \underline{S} ( x) = \ \lim\limits _ {\overline{ {n \rightarrow \infty }}\; } S _ {n} ( x) \ \textrm{ and } \ \overline{S}\; ( x) = \overline{\lim\limits}\; _ {n \rightarrow \infty } S _ {n} ( x) $$

be finite at a point $ x $, and let

$$ S( x) = \frac{1}{2} ( \underline{S} ( x) + \overline{S}\; ( x)),\ \ \delta ( x) = \frac{1}{2} ( \overline{S}\; ( x) - \underline{S} ( x)). $$

Then the upper and lower Schwarzian derivatives $ \overline{D}\; _ {2} F( x) $ and $ \underline{D} _ {2} F( x) $ belong to $ [ S - \mu \delta , S + \mu \delta ] $, where $ \mu $ is an absolute constant. (The du Bois-Reymond lemma.)

References

[1] B. Riemann, "Ueber die Darstellbarkeit einer Function durch eine trigonometrische Reihe" , Gesammelte Math. Abhandlungen , Dover, reprint (1957) pp. 227–264
[2] N.K. [N.K. Bari] Bary, "A treatise on trigonometric series" , Pergamon (1964) (Translated from Russian)

Comments

See also Riemann summation method.

For Riemann's function in the theory of differential equations see Riemann method.

How to Cite This Entry:
Riemann function. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Riemann_function&oldid=54827
This article was adapted from an original article by A.A. Konyushkov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article