Namespaces
Variants
Actions

Difference between revisions of "Representation with a highest weight vector"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
A linear representation (cf. [[Representation of a Lie algebra|Representation of a Lie algebra]]) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r0814901.png" /> of a finite-dimensional semi-simple split Lie algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r0814902.png" /> over a field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r0814903.png" /> of characteristic zero with a split [[Cartan subalgebra|Cartan subalgebra]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r0814904.png" />, having the following properties.
+
<!--
 +
r0814901.png
 +
$#A+1 = 88 n = 0
 +
$#C+1 = 88 : ~/encyclopedia/old_files/data/R081/R.0801490 Representation with a highest weight vector
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
1) In the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r0814905.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r0814906.png" /> there is a cyclic vector <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r0814907.png" /> (i.e. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r0814908.png" /> is the smallest <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r0814909.png" />-invariant subspace containing <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149010.png" />).
+
{{TEX|auto}}
 +
{{TEX|done}}
  
2) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149011.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149012.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149013.png" /> is some fixed linear form on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149014.png" /> with values in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149015.png" />.
+
A linear representation (cf. [[Representation of a Lie algebra|Representation of a Lie algebra]])  $  \rho $
 +
of a finite-dimensional semi-simple split Lie algebra  $  \mathfrak g $
 +
over a field  $  k $
 +
of characteristic zero with a split [[Cartan subalgebra|Cartan subalgebra]]  $  \mathfrak t $,
 +
having the following properties.
  
3) If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149016.png" /> is a system of simple roots, defined by a lexicographical order on the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149017.png" /> of all roots of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149018.png" /> relative to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149019.png" /> (cf. [[Root system|Root system]]), and if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149020.png" /> are the vectors from the Chevalley basis of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149021.png" /> corresponding to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149022.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149023.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149024.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149025.png" />. Thus, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149026.png" /> is a weight relative to the restriction of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149027.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149028.png" /> (cf. [[Weight of a representation of a Lie algebra|Weight of a representation of a Lie algebra]]); it is called a highest weight. The space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149029.png" /> is called a cyclic <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149033.png" />-module with highest weight <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149034.png" /> and generator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149035.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149036.png" /> is called a highest weight vector.
+
1) In the space  $  V $
 +
of $  \rho $
 +
there is a cyclic vector  $  v $(
 +
i.e. $  V $
 +
is the smallest  $  \mathfrak g $-
 +
invariant subspace containing  $  v $).
  
There exists for every linear form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149037.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149038.png" /> a unique, up to equivalence, irreducible representation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149039.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149040.png" /> with highest weight <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149041.png" />. The <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149042.png" />-module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149043.png" /> determined by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149044.png" /> is a direct sum of weight subspaces relative to the restriction of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149045.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149046.png" />. Their weights have the form
+
2)  $  \rho ( h) v = \lambda ( h) v $
 +
for all  $  h \in \mathfrak t $,
 +
where  $  \lambda $
 +
is some fixed linear form on $  \mathfrak t $
 +
with values in  $  k $.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149047.png" /></td> </tr></table>
+
3) If  $  \alpha _ {1} \dots \alpha _ {r} $
 +
is a system of simple roots, defined by a lexicographical order on the set  $  \Delta $
 +
of all roots of  $  \mathfrak g $
 +
relative to  $  \mathfrak t $(
 +
cf. [[Root system|Root system]]), and if  $  e _ {\alpha _ {i}  } , \mathfrak t _ {\alpha _ {i}  } , h _ {\alpha _ {i}  } $
 +
are the vectors from the Chevalley basis of  $  \mathfrak g $
 +
corresponding to  $  \alpha _ {i} $,
 +
$  i = 1 \dots r $,
 +
then  $  \rho ( e _ {\alpha _ {i}  } ) ( v) = 0 $
 +
for all  $  i = 1 \dots r $.
 +
Thus,  $  \lambda $
 +
is a weight relative to the restriction of  $  \rho $
 +
to  $  \mathfrak t $(
 +
cf. [[Weight of a representation of a Lie algebra|Weight of a representation of a Lie algebra]]); it is called a highest weight. The space  $  V $
 +
is called a cyclic  $  \mathfrak g $-
 +
module with highest weight  $  \lambda $
 +
and generator  $  v $,
 +
and  $  v $
 +
is called a highest weight vector.
  
where the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149048.png" /> are non-negative integers. The weight subspace <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149049.png" /> of weight <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149050.png" /> is finite-dimensional, spanned over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149051.png" /> by vectors of the form
+
There exists for every linear form  $  \lambda $
 +
on  $  \mathfrak t $
 +
a unique, up to equivalence, irreducible representation  $  \rho _  \lambda  $
 +
of $  \mathfrak g $
 +
with highest weight $  \lambda $.  
 +
The  $  \mathfrak g $-
 +
module  $  V ( \lambda ) $
 +
determined by $  \rho _  \lambda  $
 +
is a direct sum of weight subspaces relative to the restriction of $  \rho _  \lambda  $
 +
to  $  \mathfrak t $.
 +
Their weights have the form
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149052.png" /></td> </tr></table>
+
$$
 +
\lambda -
 +
\sum _ {i = 1 } ^ { r }
 +
n _ {i} \alpha _ {i} ,
 +
$$
  
and for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149053.png" /> the restriction of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149054.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149055.png" /> is the operator of scalar multiplication by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149056.png" />. The space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149057.png" /> is one-dimensional; the weight <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149058.png" /> is the only highest weight of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149059.png" /> and can be characterized as the unique weight of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149060.png" />-module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149061.png" /> such that any other weight has the form
+
where the $  n _ {i} $
 +
are non-negative integers. The weight subspace  $  V _  \mu  ( \lambda ) $
 +
of weight  $  \mu $
 +
is finite-dimensional, spanned over  $  k $
 +
by vectors of the form
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149062.png" /></td> </tr></table>
+
$$
 +
( \rho _  \lambda  ( f _ {\alpha _ {i _ {1}  } } ) \dots
 +
\rho _  \lambda  ( f _ {\alpha _ {i _ {s}  } } ) ) ( v ) ,
 +
$$
  
where the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149063.png" /> are non-negative integers.
+
and for any  $  h \in \mathfrak t $
 +
the restriction of  $  \rho _  \lambda  ( h) $
 +
to  $  V _  \mu  ( \lambda ) $
 +
is the operator of scalar multiplication by  $  \mu ( h) $.  
 +
The space  $  V _  \lambda  ( \lambda ) $
 +
is one-dimensional; the weight  $  \lambda $
 +
is the only highest weight of  $  \rho _  \lambda  $
 +
and can be characterized as the unique weight of the  $  \mathfrak t $-
 +
module  $  V ( \lambda ) $
 +
such that any other weight has the form
  
A representation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149064.png" /> is finite-dimensional if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149065.png" /> is a dominant linear form on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149066.png" />, i.e. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149067.png" /> is a non-negative integer for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149068.png" />. Every irreducible finite-dimensional linear representation of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149069.png" /> has the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149070.png" /> for some dominant linear form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149071.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149072.png" /> (hence all such representations are classified, up to equivalence, by the dominant linear forms on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149073.png" />). The set of all weights of a finite-dimensional representation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149074.png" /> relative to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149075.png" /> is invariant relative to the [[Weyl group|Weyl group]] of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149076.png" /> (regarded as a group of linear transformations of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149077.png" />), and if weights <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149078.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149079.png" /> belong to one orbit of the Weyl group, then the dimensions of the spaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149080.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149081.png" /> are equal. For every weight <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149082.png" /> and every root <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149083.png" /> the number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149084.png" /> is an integer; if, moreover, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149085.png" /> is also a weight, then
+
$$
 +
\lambda -
 +
\sum _ {i = 1 } ^ { r }
 +
n _ {i} \alpha _ {i} ,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149086.png" /></td> </tr></table>
+
where the  $  n _ {i} $
 +
are non-negative integers.
  
(here <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149087.png" /> is the element in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149088.png" /> corresponding to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149089.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149090.png" /> is the root vector of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081490/r08149091.png" />).
+
A representation  $  \rho _  \lambda  $
 +
is finite-dimensional if and only if  $  \lambda $
 +
is a dominant linear form on  $  \mathfrak t $,
 +
i.e.  $  \lambda ( h _ {\alpha _ {i}  } ) $
 +
is a non-negative integer for  $  i = 1 \dots r $.  
 +
Every irreducible finite-dimensional linear representation of  $  \mathfrak g $
 +
has the form  $  \rho _  \lambda  $
 +
for some dominant linear form  $  \lambda $
 +
on  $  \mathfrak t $(
 +
hence all such representations are classified, up to equivalence, by the dominant linear forms on  $  \mathfrak t $).  
 +
The set of all weights of a finite-dimensional representation  $  \rho _  \lambda  $
 +
relative to  $  \mathfrak t $
 +
is invariant relative to the [[Weyl group|Weyl group]] of  $  \mathfrak g $(
 +
regarded as a group of linear transformations of  $  \mathfrak t $),
 +
and if weights  $  \mu $
 +
and  $  \gamma $
 +
belong to one orbit of the Weyl group, then the dimensions of the spaces  $  V _  \mu  ( \lambda ) $
 +
and  $  V _  \gamma  ( \lambda ) $
 +
are equal. For every weight  $  \mu $
 +
and every root  $  \alpha \in \Delta $
 +
the number  $  \mu ( h _  \alpha  ) $
 +
is an integer; if, moreover,  $  \mu + \alpha $
 +
is also a weight, then
 +
 
 +
$$
 +
\rho ( e _  \alpha  )
 +
( V _  \mu  ( \lambda ))  \neq  0
 +
$$
 +
 
 +
(here  $  h _  \alpha  $
 +
is the element in $  \mathfrak t $
 +
corresponding to $  \alpha $
 +
and $  e _  \alpha  $
 +
is the root vector of $  \alpha $).
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  N. Jacobson,  "Lie algebras" , Interscience  (1962)  ((also: Dover, reprint, 1979))</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> , ''Theórie des algèbres de Lie. Topologie des groupes de Lie'' , ''Sem. S. Lie'' , '''Ie année 1954–1955''' , Secr. Math. Univ. Paris  (1955)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  D.P. Zhelobenko,  "Compact Lie groups and their representations" , Amer. Math. Soc.  (1973)  (Translated from Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  E. Cartan,  "Les tenseurs irréductibles et les groupes linéaires simples et semi-simples"  ''Bull. Sci. Math.'' , '''49'''  (1925)  pp. 130–152</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  Harish-Chandra,  "On some applications of the universal enveloping algebra of a semisimple Lie algebra"  ''Trans. Amer. Math. Soc.'' , '''70'''  (1951)  pp. 28–96</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  N. Jacobson,  "Lie algebras" , Interscience  (1962)  ((also: Dover, reprint, 1979))</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> , ''Theórie des algèbres de Lie. Topologie des groupes de Lie'' , ''Sem. S. Lie'' , '''Ie année 1954–1955''' , Secr. Math. Univ. Paris  (1955)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  D.P. Zhelobenko,  "Compact Lie groups and their representations" , Amer. Math. Soc.  (1973)  (Translated from Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  E. Cartan,  "Les tenseurs irréductibles et les groupes linéaires simples et semi-simples"  ''Bull. Sci. Math.'' , '''49'''  (1925)  pp. 130–152</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  Harish-Chandra,  "On some applications of the universal enveloping algebra of a semisimple Lie algebra"  ''Trans. Amer. Math. Soc.'' , '''70'''  (1951)  pp. 28–96</TD></TR></table>

Latest revision as of 08:11, 6 June 2020


A linear representation (cf. Representation of a Lie algebra) $ \rho $ of a finite-dimensional semi-simple split Lie algebra $ \mathfrak g $ over a field $ k $ of characteristic zero with a split Cartan subalgebra $ \mathfrak t $, having the following properties.

1) In the space $ V $ of $ \rho $ there is a cyclic vector $ v $( i.e. $ V $ is the smallest $ \mathfrak g $- invariant subspace containing $ v $).

2) $ \rho ( h) v = \lambda ( h) v $ for all $ h \in \mathfrak t $, where $ \lambda $ is some fixed linear form on $ \mathfrak t $ with values in $ k $.

3) If $ \alpha _ {1} \dots \alpha _ {r} $ is a system of simple roots, defined by a lexicographical order on the set $ \Delta $ of all roots of $ \mathfrak g $ relative to $ \mathfrak t $( cf. Root system), and if $ e _ {\alpha _ {i} } , \mathfrak t _ {\alpha _ {i} } , h _ {\alpha _ {i} } $ are the vectors from the Chevalley basis of $ \mathfrak g $ corresponding to $ \alpha _ {i} $, $ i = 1 \dots r $, then $ \rho ( e _ {\alpha _ {i} } ) ( v) = 0 $ for all $ i = 1 \dots r $. Thus, $ \lambda $ is a weight relative to the restriction of $ \rho $ to $ \mathfrak t $( cf. Weight of a representation of a Lie algebra); it is called a highest weight. The space $ V $ is called a cyclic $ \mathfrak g $- module with highest weight $ \lambda $ and generator $ v $, and $ v $ is called a highest weight vector.

There exists for every linear form $ \lambda $ on $ \mathfrak t $ a unique, up to equivalence, irreducible representation $ \rho _ \lambda $ of $ \mathfrak g $ with highest weight $ \lambda $. The $ \mathfrak g $- module $ V ( \lambda ) $ determined by $ \rho _ \lambda $ is a direct sum of weight subspaces relative to the restriction of $ \rho _ \lambda $ to $ \mathfrak t $. Their weights have the form

$$ \lambda - \sum _ {i = 1 } ^ { r } n _ {i} \alpha _ {i} , $$

where the $ n _ {i} $ are non-negative integers. The weight subspace $ V _ \mu ( \lambda ) $ of weight $ \mu $ is finite-dimensional, spanned over $ k $ by vectors of the form

$$ ( \rho _ \lambda ( f _ {\alpha _ {i _ {1} } } ) \dots \rho _ \lambda ( f _ {\alpha _ {i _ {s} } } ) ) ( v ) , $$

and for any $ h \in \mathfrak t $ the restriction of $ \rho _ \lambda ( h) $ to $ V _ \mu ( \lambda ) $ is the operator of scalar multiplication by $ \mu ( h) $. The space $ V _ \lambda ( \lambda ) $ is one-dimensional; the weight $ \lambda $ is the only highest weight of $ \rho _ \lambda $ and can be characterized as the unique weight of the $ \mathfrak t $- module $ V ( \lambda ) $ such that any other weight has the form

$$ \lambda - \sum _ {i = 1 } ^ { r } n _ {i} \alpha _ {i} , $$

where the $ n _ {i} $ are non-negative integers.

A representation $ \rho _ \lambda $ is finite-dimensional if and only if $ \lambda $ is a dominant linear form on $ \mathfrak t $, i.e. $ \lambda ( h _ {\alpha _ {i} } ) $ is a non-negative integer for $ i = 1 \dots r $. Every irreducible finite-dimensional linear representation of $ \mathfrak g $ has the form $ \rho _ \lambda $ for some dominant linear form $ \lambda $ on $ \mathfrak t $( hence all such representations are classified, up to equivalence, by the dominant linear forms on $ \mathfrak t $). The set of all weights of a finite-dimensional representation $ \rho _ \lambda $ relative to $ \mathfrak t $ is invariant relative to the Weyl group of $ \mathfrak g $( regarded as a group of linear transformations of $ \mathfrak t $), and if weights $ \mu $ and $ \gamma $ belong to one orbit of the Weyl group, then the dimensions of the spaces $ V _ \mu ( \lambda ) $ and $ V _ \gamma ( \lambda ) $ are equal. For every weight $ \mu $ and every root $ \alpha \in \Delta $ the number $ \mu ( h _ \alpha ) $ is an integer; if, moreover, $ \mu + \alpha $ is also a weight, then

$$ \rho ( e _ \alpha ) ( V _ \mu ( \lambda )) \neq 0 $$

(here $ h _ \alpha $ is the element in $ \mathfrak t $ corresponding to $ \alpha $ and $ e _ \alpha $ is the root vector of $ \alpha $).

References

[1] N. Jacobson, "Lie algebras" , Interscience (1962) ((also: Dover, reprint, 1979))
[2] , Theórie des algèbres de Lie. Topologie des groupes de Lie , Sem. S. Lie , Ie année 1954–1955 , Secr. Math. Univ. Paris (1955)
[3] D.P. Zhelobenko, "Compact Lie groups and their representations" , Amer. Math. Soc. (1973) (Translated from Russian)
[4] E. Cartan, "Les tenseurs irréductibles et les groupes linéaires simples et semi-simples" Bull. Sci. Math. , 49 (1925) pp. 130–152
[5] Harish-Chandra, "On some applications of the universal enveloping algebra of a semisimple Lie algebra" Trans. Amer. Math. Soc. , 70 (1951) pp. 28–96
How to Cite This Entry:
Representation with a highest weight vector. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Representation_with_a_highest_weight_vector&oldid=11726
This article was adapted from an original article by V.L. Popov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article