Namespaces
Variants
Actions

Representation of a group

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

2020 Mathematics Subject Classification: Primary: 20B Secondary: 22F05 [MSN][ZBL]

A homomorphism of the group into the group of all invertible transformations of a set $V$.

A permutation representation is a homomorphism to the symmetric group $S_V$: a group action of $G$ on $V$: cf. Permutation group.

A representation $\rho$ of a group $G$ is called linear if $V$ is a vector space over a field $k$ and if the transformations $\rho(g)$, $g\in G$, are linear. Often, linear representations are, for shortness, simply termed representations (cf. Representation theory). In the theory of representations of abstract groups the theory of finite-dimensional representations of finite groups is best developed (cf. Finite group, representation of a; Representation of the symmetric groups).

If $G$ is a topological group, then one considers continuous linear representations of $G$ on a topological vector space $V$ (cf. Continuous representation; Representation of a topological group). If $G$ is a Lie group and $V$ is a finite-dimensional space over $\mathbf R$ or $\mathbf C$, then a continuous linear representation is automatically real analytic. Analytic and differentiable representations of a Lie group are defined also in the infinite-dimensional case (cf. Analytic representation; Infinite-dimensional representation). To each differentiable representation $\rho$ of a Lie group $G$ corresponds some linear representation of its Lie algebra — the differential representation of $\rho$ (cf. Representation of a Lie algebra). If $G$ is moreover connected, then its finite-dimensional representations are completely determined by their differentials. The most developed branch of the representation theory of topological groups is the theory of finite-dimensional linear representations of semi-simple Lie groups, which is often formulated in the language of Lie algebras (cf. Finite-dimensional representation; Representation of the classical groups; Cartan theorem on the highest weight vector), the representation theory of compact groups, and the theory of unitary representations (cf. Representation of a compact group; Unitary representation).

For algebraic groups one has the theory of rational representations (cf. Rational representation), which is in many aspects analogous to the theory of finite-dimensional representations of Lie groups.

References

[1] D.P. Zhelobenko, "Compact Lie groups and their representations" , Amer. Math. Soc. (1973) (Translated from Russian) MR0473097 MR0473098 Zbl 0228.22013
[2] A.A. Kirillov, "Elements of the theory of representations" , Springer (1976) (Translated from Russian) MR0412321 Zbl 0342.22001
[3] M.A. Naimark, "Theory of group representations" , Springer (1982) (Translated from Russian) MR0793377 Zbl 0484.22018
[4] D.P. Zhelobenko, A.I. Shtern, "Representations of Lie groups" , Moscow (1981) (In Russian) MR1104272 MR0709598 Zbl 0581.22016 Zbl 0521.22006


Comments

References

[a1] D.J. Benson, "Modular representation theory: New trends and methods" , Lect. notes in math. , 1081 , Springer (1984) MR0765858 Zbl 0564.20004
[a2] C.W. Curtis, I. Reiner, "Methods of representation theory" , 1–2 , Wiley (Interscience) (1981–1987)
[a3] W. Feit, "The representation theory of finite groups" , North-Holland (1982) MR0661045 Zbl 0493.20007
[a4] J.-P. Serre, "Linear representations of finite groups" , Springer (1977) (Translated from French) MR0450380 Zbl 0355.20006
[a5] B. Huppert, "Endliche Gruppen" , 1 , Springer (1967) pp. 64 MR0224703 Zbl 0217.07201
[a6] A.W. Knapp, "Representation theory of semisimple groups" , Princeton Univ. Press (1986) MR0855239 Zbl 0604.22001
[a7] J. Tits, "Tabellen zu den einfachen Lie Grupppen und ihren Darstellungen" , Lect. notes in math. , 40 , Springer (1967)
[a8] G. Warner, "Harmonic analysis on semisimple Lie groups" , 1–2 , Springer (1972)
How to Cite This Entry:
Representation of a group. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Representation_of_a_group&oldid=35282
This article was adapted from an original article by A.L. Onishchik (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article